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Abstract

Summary: Runs of homozygosity (ROH) are important genomic features that manifest when

identical-by-descent haplotypes are inherited from parents. Their length distributions and genomic

locations are informative about population history and they are useful for mapping recessive loci

contributing to both Mendelian and complex disease risk. Here, we present software implementing

a model-based method (Pemberton et al., 2012) for inferring ROH in genome-wide SNP datasets

that incorporates population-specific parameters and a genotyping error rate as well as provides a

length-based classification module to identify biologically interesting classes of ROH. Using simu-

lations, we evaluate the performance of this method.

Availability and Implementation: GARLIC is written in Cþþ. Source code and pre-compiled

binaries (Windows, OSX and Linux) are hosted on GitHub (https://github.com/szpiech/garlic) under

the GNU General Public License version 3.

Contact: zachary.szpiech@ucsf.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Runs of homozygous genotypes (ROH) are a commonly used indica-

tor of genomic autozygosity, regions of the genome where the exact

same haplotype has been inherited identical by descent (IBD) from

an ancestor common to both parents. Originally conceived as an ap-

proach to improve the accuracy of studies performing homozygosity

mapping (Lander and Botstein, 1987) of recessive Mendelian dis-

eases (Broman and Weber, 1999), ROH have subsequently formed

the foundation of studies investigating the contributions of recessive

deleterious variants to the genetic risk for complex diseases

(Christofidou et al., 2015; Keller et al., 2012; McLaughlin et al.,

2015) and the genetic determination of complex traits (Campbell

et al., 2007; Fareed and Afzal, 2014; Howrigan et al., 2015; Joshi

et al., 2015; McQuillan et al., 2012; Power et al., 2014; Rudan

et al., 2003) as well as the identification of novel genes underlying

numerous complex diseases (Ghani et al., 2015; Lencz et al., 2007;

McLaughlin et al., 2015; Sud et al., 2015; Yang et al., 2012) and

human standing height (Yang et al., 2010). Moreover, they have

provided unique insights into the demographic and sociocultural

processes that have shaped genomic variation patterns in contem-

porary worldwide human populations (Gibson et al., 2006;

McQuillan et al., 2008; Nalls et al., 2009; Pemberton et al., 2012;

Szpiech et al., 2013), ancient hominins (Meyer et al., 2012; Prufer

et al., 2014), non-human primates (Prado-Martinez et al., 2013;

Xue et al., 2015) and livestock (Curik et al., 2014; Zhang et al.,

2015).

There are several methods for identifying ROH in genomes,

which fall into two general categories: genotype-counting and

model-based. Genotype-counting methods search for long tracts of

consecutive homozygous genotypes with parameters that define the

maximum numbers of heterozygotes and missing genotypes allow-

able. Software implementing such an approach include PLINK

(Purcell et al., 2007), GERMLINE (Gusev et al., 2009) and

cgaTOH (Zhang et al., 2013). Model-based methods assert
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probability models that discriminate between autozygous and non-

autozygous regions and incorporate parameters such as allele fre-

quency and recombination rate that can be estimated from the data.

Software such as BEAGLE (Browning and Browning, 2013), H3M2

(Magi et al., 2014), FILTUS (Vigeland et al., 2016) and BCFtools/

RoH (Narasimhan et al., 2016) utilize model-based methods.

Here we implement the model-based method for calling

ROH originally published by Pemberton et al. (2012) as well as

their population-based ROH length-based classification approach

that partitions ROH into classes that broadly represent ROH gener-

ated by different population processes, a functionality that is unique

to our software. We compare this method against those imple-

mented in the popular PLINK (Purcell et al., 2007) and the well-

performing BCFtools/RoH (Narasimhan et al., 2016) software,

which are representative of their categories and well-suited to

analyzing the same types of data as the Pemberton et al. (2012)

method (e.g. H3M2 (Magi et al., 2014) and FILTUS (Vigeland

et al., 2016) are explicitly designed for analyzing whole exome

sequencing data).

2 Materials and methods

Pemberton et al. (2012) introduced an ROH calling pipeline that

uses a logarithm of the odds (LOD) score measure of autozygosity

applied in a sliding-window framework to infer ROH in high-

density genome-wide SNP genotype data. This method incorporates

a genotype error rate and population-specific allele frequencies

(Broman and Weber, 1999; Wang et al., 2009) in contrast to popu-

lar genotype counting methods such as the one implemented in

PLINK (Purcell et al., 2007). The LOD score of window w in indi-

vidual i is calculated as the sum of the log-likelihood ratios of the K

SNPs in the window:

LOD w; ið Þ ¼
XK

k¼1

log10
Pr½Gi;kjXk ¼ 1�
Pr½Gi;kjXk ¼ 0�

� �
:

Here, Pr½Gi;kjXk ¼ 1� is the probability of observing genotype Gi;k

under the hypothesis of autozygosity (Xk ¼ 1), and Pr½Gi;kjXk ¼ 0�
is the probability of observing genotype Gi;k under the hypothesis of

non-autozygosity (Xk ¼ 0). For a biallelic locus with alleles A and B

that have population frequencies pA and pB and a genotype error

rate e, the genotype probabilities under the autozygosity and non-

autozygosity hypotheses are given in Supplementary Table S1.

Genotypes with missing data are assigned a LOD score of 0.

Calculating LOD w; ið Þ for all windows in all individuals in a

given sample set, examination of the distribution of scores

shows clear bimodality (see Fig. 1 from Pemberton et al., 2012).

Windows in the left-hand mode support the hypothesis of non-

autozygosity and those in the right-hand mode support the hypoth-

esis of autozygosity. As window size increases the area under the

autozygous mode decreases until it disappears, likely reflecting the

size above which window lengths are frequently longer than those of

most common true autozygous regions and therefore encompass

non-autozygous regions that mask the presence of autozygosity. A

reasonable window size for ROH detection is thus the largest win-

dow size where the distribution of LOD w; ið Þ is bimodal, with win-

dows defined as autozygous if their LOD w; ið Þ is greater than the

local minimum between the two modes (Pemberton et al., 2012).

To facilitate window size selection, GARLIC can begin at a

user-defined window size and then increase it in increments

of a user-defined step size. At each window size the distribution

of LODðw; iÞ scores is estimated via Gaussian kernel density

estimation (KDE) with the FIGtree package (Morariu et al., 2009)

until an ad hoc heuristic (essentially, the residual sum of squared

errors from a linear spline fit) designed to summarize the magnitude

of the oscillations in the KDE distribution of LODðw; iÞ scores

(see Fig. 1 from Pemberton et al. (2012)) is sufficiently small; this

approach broadly identifies the largest window size that is bimodal

with the provided sample set. Once a window size has been chosen,

windows are called autozygous if their LODðw; iÞ score is greater

than the local minimum between the two modes in the LOD score

KDE distribution at that window size.

ROH are then constructed in the following way. Each variable

site in the data is included in multiple windows (i.e. a site is included

in 100 different windows given a window size of 100), and near the

edges of a true autozygous region some sites will be included in both

high-scoring and low-scoring windows as the window enters or

leaves a region with high support for autozygosity. Therefore we re-

quire at least a certain (user-definable with --overlap-frac flag) num-

ber of high-scoring windows to cover a site before it is included in

an ROH region. Finally, we do not construct an ROH across a

(user-definable with --max-gap flag) maximum gap (default 200

kb). ROH are thus comprised of a concatenation of consecutive sites

that meet these criteria.

GARLIC will also classify ROH into the three length groups

(Pemberton et al., 2012) that broadly correspond to ROH arising

from distinct processes: (i) short ROH reflecting homozygosity for

ancient haplotypes contributing to local linkage disequilibrium (LD)

patterns, (ii) medium ROH reflecting homozygosity arising from re-

cent population demographic changes (e.g. bottlenecks) and

(iii) long ROH reflecting homozygosity due to recent parental re-

latedness. This classification is performed using an inbuilt Gaussian

mixture function that fits a 3-component model to the ROH length

distribution or based on user-provided length thresholds (set with

the --size-bounds flag).

ROH are output along with length class information in UCSC’s

plain-text BED format to enable easy visualization in the UCSC

Genome Browser (Speir et al., 2016) or further downstream analysis

by the user.

3 Results

In order to facilitate the uptake of this likelihood-based ROH infer-

ence method, we implement the approach of Pemberton et al.

(2012) in the software GARLIC (Genomic Autozygosity Regions

Likelihood Inference and Classification). A schematic of the analysis

pipeline implemented in GARLIC is provided in Supplementary

Figure S1. Genotype data and its associated individual information

are accepted in the popular transposed-pedigree (TPED) and family

(TFAM) file formats. Allele frequencies used in the LOD score cal-

culation can either be estimated by GARLIC from the genotype

data or provided in a separate file. We recommend that a minimum

of 25 individuals per analysis group be provided if allele frequencies

are to be calculated from the provided genotype data, and if multiple

groups of different sample sizes are to be analyzed jointly, the stand-

ardized size resampling flag should be used to mitigate biases intro-

duced into allele frequency estimates by the different sizes. Note,

however, that this may introduce some stochasticity in the identifi-

cation of very short ROH. The genotype error rate e to be used in

the calculations is provided by the user on the command line, and

could be calculated based upon the observed rate of genotype dis-

cordance between duplicate samples or based on industry-reported

genotyping error rates.
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We evaluate GARLIC’s performance using forward simulations

that report true autozygous regions (Kardos et al., 2015). We gener-

ate 100 replicates of 30 individuals simulated with 150k biallelic

sites across 250 Mbps. We further introduce genotyping errors at a

rate of 0.001. To introduce varying sizes of ROH, we vary popula-

tion size over the last 50 generations of the simulation. We keep the

population size constant for 20 generations, followed by an 80% re-

duction in population size for 10 generations, followed by a recov-

ery for 15 generations, and then a 94% reduction in population size

for the final 5 generations.

We allowed GARLIC to automatically choose window size

(--auto-winsize), which was consistently chosen to be either 100

or 110, and we specified an error rate of 0.001. Finally, we eval-

uated a range of possible ‘overlap fractions’ to determine a de-

fault value to be used for constructing ROH. Supplementary

Figure S2 suggests that this parameter be set to 0.25, which is

the default setting in GARLIC. All other parameters were set to

default values. We also compare GARLIC results with those of

the popular genotype counting method implemented in PLINK

(using a matched window size; Purcell et al., 2007) and

BCFtools/RoH (Narasimhan et al., 2016). GARLIC achieves bet-

ter power (Supplementary Fig. S3A) than both PLINK and

BCFtools/RoH, although it has a marginally worse false positive

rate (Supplementary Fig. S3B) due solely to differences in ROH

boundary placement.

Overall, GARLIC performs comparably to existing methods,

while offering the advantage of in-built ROH length classification.

A limitation of GARLIC is that it requires population allele frequen-

cies in order to identify ROH. While PLINK can easily analyze sin-

gle genomes without extra information, GARLIC would require a

separate file of allele frequencies for the individual’s population of

origin; BCFtools/RoH is similarly limited. This is likewise the case

for small datasets comprised only of individuals known to be highly

inbred compared to their source population. Additionally, our simu-

lations did not consider variable recombination rate, which may ad-

versely affect GARLIC performance in favor of methods that

explicitly handle it. However, planned future updates to the model-

based GARLIC method will address this.

GARLIC is user friendly and open source, offering a simple im-

plementation of the population-specific ROH calling pipeline of

Pemberton et al. (2012). The runtime of GARLIC depends on the

parameters set. As a guide, we re-analyzed the Pemberton et al.

(2012) data comprised of 1839 individuals from 64 worldwide

human populations typed at 577 489 SNPs, and GARLIC took

under 16 minutes to complete ROH calling and classification.

Source code and pre-compiled binaries for GARLIC under the

Windows, OSX and Linux environments are hosted on GitHub

(https://github.com/szpiech/garlic).
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