Supplemental Information

selscan 2.0: scanning for sweeps in unphased data

Table S1. Demographic history parameters for simulations. N_{A} represents the ancestral effective population size. N_{0} represents the effective population size of the population experiencing the sweep. N_{0} represents the effective population size of the non-sweep population. t_{d} represents the split time between the two populations.

	N_{A}	N_{0} at split	N_{0} at present	N_{1} at split	N_{1} at present	t_{d}
Demo 1	10,000	10,000	10,000	10,000	10,000	$2,000 / 4,000 / 8,000$
Demo 2	10,000	10,000	10,000	5,000	5,000	$2,000 / 4,000 / 8,000$
Demo 3	10,000	5,000	5,000	10,000	10,000	$2,000 / 4,000 / 8,000$
Demo 4	10,000	10,000	$50,000^{\dagger}$	10,000	10,000	$2,000 / 4,000 / 8,000$
Demo 5	10,000	10,000	10,000	10,000	$50,000^{\dagger}$	$2,000 / 4,000 / 8,000$

${ }^{\dagger}$ The reached via exponential growth starting 2,000 generations ago.
Table S2. False positive rate computed from neutral simulations for varying t_{d} and demographic history with $\mathrm{n}=100$ diploid samples (from each population for XP-EHH and XP-nSL).

		$t_{d}=2000$	$t_{d}=4000$	$t_{d}=8000$
iHS	Demo 1	0.013	0.1	0.009
	Demo 3	0.007	0.013	0.007
	Demo 4	0.015	0.018	0.008
nSL	Demo 1	0.01	0.015	0.008
	Demo 3	0.008	0.011	0.007
	Demo 4	0.014	0.021	0.014
XP-EHH	Demo 1	0.013	0.013	0.016
	Demo 2	0.017	0.009	0.015
	Demo 3	0.01	0.011	0.012
	Demo 4	0.012	0.014	0.014
	Demo 5	0.011	0.012	0.013
XP-nSL	Demo 1	0.014	0.011	0.013
	Demo 2	0.019	0.011	0.012
	Demo 3	0.011	0.011	0.012
	Demo 4	0.012	0.012	0.014
	Demo 5	0.011	0.012	0.014

Table S3. False positive rate computed from neutral simulations for varying t_{d} and demographic history with $\mathrm{n}=50$ diploid samples (from each population for XP-EHH and XP-nSL).

		$t_{d}=2000$	$t_{d}=4000$	$t_{d}=8000$
iHS	Demo 1	0.012	0.007	0.01
	Demo 3	0.015	0.009	0.009
	Demo 4	0.01	0.005	0.014
nSL	Demo 1	0.014	0.012	0.01
	Demo 3	0.01	0.012	0.011
	Demo 4	0.007	0.013	0.013
XP-EHH	Demo 1	0.015	0.01	0.015
	Demo 2	0.018	0.009	0.013
	Demo 3	0.009	0.014	0.013
	Demo 4	0.011	0.011	0.015
	Demo 5	0.012	0.016	0.02
XP-nSL	Demo 1	0.014	0.01	0.012
	Demo 2	0.018	0.011	0.013
	Demo 3	0.009	0.014	0.014
	Demo 4	0.011	0.013	0.014
	Demo 5	0.012	0.015	0.022

Table S4. False positive rate computed from neutral simulations for varying t_{d} and demographic history with $\mathrm{n}=20$ diploid samples (from each population for XP-EHH and XP-nSL).

iHS		$t_{d}=2000$	$t_{d}=4000$	$t_{d}=8000$
	Demo 1	0.001	0.003	0.002
	Demo 3	0.004	0.002	0.003
	Demo 4	0.002	0.0	0.003
XP-EHH	Demo 1	0.001	0.002	0.0
	Demo 3	0.002	0.003	0.002
	Demo 4	0.0	0.0	0.015
	Demo 1	0.019	0.012	0.012
	Demo 2	0.017	0.006	0.013
	Demo 3	0.011	0.013	0.017
	Demo 4	0.008	0.014	0.014
	Demo 5	0.008	0.013	0.011
	Demo 1	0.018	0.014	0.013
	Demo 2	0.016	0.011	0.02
	Demo 3	0.01	0.013	0.013
	Demo 4	0.009	0.012	
	Demo 5	0.009		

Table S5. False positive rate computed from neutral simulations for varying t_{d} and demographic history with $\mathrm{n}=10$ diploid samples (from each population for XP-EHH and XP-nSL).

		$t_{d}=2000$	$t_{d}=4000$	$t_{d}=8000$
iHS	Demo 1	0.0	0.0	0.0
	Demo 3	0.0	0.0	0.0
	Demo 4	0.0	0.0	0.0
nSL	Demo 1	0.0	0.0	0.0
	Demo 3	0.0	0.0	0.0
	Demo 4	0.0	0.0	0.0
XP-EHH	Demo 1	0.014	0.013	0.014
	Demo 2	0.01	0.008	0.016
	Demo 3	0.01	0.012	0.015
	Demo 4	0.01	0.014	0.012
	Demo 5	0.008	0.019	0.012
XP-nSL	Demo 1	0.012	0.013	0.016
	Demo 2	0.011	0.006	0.013
	Demo 3	0.01	0.013	0.015
	Demo 4	0.01	0.014	0.012
	Demo 5	0.009	0.02	0.01

C Demo 3; iHS; $\mathrm{t}_{\mathrm{d}}=2000$

E Demo 4; iHS; $\mathrm{t}_{\mathrm{d}}=2000$

B Demo 1; $n S L ; t_{d}=2000$

D Demo 3; nSL; $\mathrm{t}_{\mathrm{d}}=2000$

F \quad Demo 4; nSL; $t_{d}=2000$

Figure S1. Power curves for unphased implementations of iHS (A, C, and E) and nSL (B, D, and F) under demographic histories Demo 1 (A and B), Demo 3 (C and D), and Demo 4 (E and F) with $\mathrm{n}=100$ diploid samples. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=2000$ is the time in generations since the two populations diverged.

C Demo 2; XP-EHH; $\mathrm{t}_{\mathrm{d}}=2000$

$E \quad$ Demo 3; XP-EHH; $t_{d}=2000$

D Demo 2; XP-nSL; $\mathrm{t}_{\mathrm{d}}=2000$

F Demo 3; XP-nSL; $\mathrm{t}_{\mathrm{d}}=2000$

Figure S2. Power curves for unphased implementations of XP-EHH (A, C, and E) and XP-nSL (B, D, and F) under demographic histories Demo 1 (A and B), Demo 2 (C and D), and Demo 3 (E and F) with n $=100$ diploid samples from each population. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=2000$ is the time in generations since the two populations diverged.

C Demo 5; XP-EHH; $\mathrm{t}_{\mathrm{d}}=2000$
D Demo 5; XP-nSL; $\mathrm{t}_{\mathrm{d}}=2000$

Figure S3. Power curves for unphased implementations of XP-EHH (A and C) and XP-nSL (B and D) under demographic histories Demo 4 (A and B), and Demo 5 (C and D) with $\mathrm{n}=100$ diploid samples from each population. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=2000$ is the time in generations since the two populations diverged.

C Demo 3: iHS; $\mathrm{t}_{\mathrm{d}}=2000$

$E \quad$ Demo 4: iHS; $\mathrm{t}_{\mathrm{d}}=2000$

B Demo 1: nSL; $\mathrm{t}_{\mathrm{d}}=2000$

F \quad Demo 4: $n S L ; t_{d}=2000$

Figure S4. Power difference between unphased implementations of iHS (A, C, and E) and nSL (B, D, and F) and phased implementations. Blue curves represent the power difference between the unphased and phased statistics when applied to unphased data (UN). Red curves represent the power difference between the unphased and phased statistics when applied to perfectly phased data (PH). Values greater than 0 indicate the unphased statistic had higher power. Applied to demographic histories Demo 1 (A and $\mathrm{B})$, Demo 3 (C and D), and Demo 4 (E and F) with $\mathrm{n}=100$ diploid samples. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=2000$ is the time in generations since the two populations diverged.

C Demo 2: XP-EHH; $\mathrm{t}_{\mathrm{d}}=2000$

E Demo 3: XP-EHH; $\mathrm{t}_{\mathrm{d}}=2000$
F Demo 3: XP-nSL; $\mathrm{t}_{\mathrm{d}}=2000$

Figure S5. Power difference between unphased implementations of XP-EHH (A, C, and E) and XP-nSL (B, D, and F) and phased implementations. Blue curves represent the power difference between the unphased and phased statistics when applied to unphased data (UN). Red curves represent the power difference between the unphased and phased statistics when applied to perfectly phased data (PH). Values greater than 0 indicate the unphased statistic had higher power. Applied to demographic histories Demo 1 (A and B), Demo $2(\mathrm{C}$ and D), and Demo 3 (E and F) with $\mathrm{n}=100$ diploid samples from each population. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=$ 2000 is the time in generations since the two populations diverged.

C Demo 5: XP-EHH; $\mathrm{t}_{\mathrm{d}}=$

D Demo 5: XP-nSL; $\mathrm{t}_{\mathrm{d}}=2000$

E Demo 3: XP-EHH; $t_{d}=2000$

F Demo 3: XP-nSL; $\mathrm{t}_{\mathrm{d}}=2000$

Figure S6. Power difference between unphased implementations of XP-EHH (A and C) and XP-nSL (B and D) and phased implementations. Blue curves represent the power difference between the unphased and phased statistics when applied to unphased data (UN). Red curves represent the power difference between the unphased and phased statistics when applied to perfectly phased data (PH). Values greater than 0 indicate the unphased statistic had higher power. Applied to demographic histories Demo 4 (A and $\mathrm{B})$, and Demo $5(\mathrm{C}$ and D$)$ with $\mathrm{n}=100$ diploid samples from each population. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=2000$ is the time in generations since the two populations diverged.

C Demo 3; iHS; $\mathrm{t}_{\mathrm{d}}=4000$

E Demo $4 ; \mathrm{iHS} ; \mathrm{t}_{\mathrm{d}}=4000$

B Demo 1; nSL; $\mathrm{t}_{\mathrm{d}}=4000$

D Demo 3; nSL; $\mathrm{t}_{\mathrm{d}}=4000$

F \quad Demo 4; nSL; $t_{d}=4000$

Figure S7. Power curves for unphased implementations of iHS (A, C, and E) and nSL (B, D, and F) under demographic histories Demo 1 (A and B), Demo 3 (C and D), and Demo 4 (E and F) with $\mathrm{n}=100$ diploid samples. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=4000$ is the time in generations since the two populations diverged.

C Demo 3; iHS; $\mathrm{t}_{\mathrm{d}}=8000$

E Demo 4; iHS; $\mathrm{t}_{\mathrm{d}}=8000$

B Demo 1; $n S L ; t_{d}=8000$

D Demo 3; nSL; $\mathrm{t}_{\mathrm{d}}=8000$

F Demo 4; nSL; $t_{d}=8000$

Figure S8. Power curves for unphased implementations of iHS (A, C, and E) and nSL (B, D, and F) under demographic histories Demo 1 (A and B), Demo 3 (C and D), and Demo 4 (E and F) with n = 100 diploid samples. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=8000$ is the time in generations since the two populations diverged.

C Demo 2; XP-EHH; $\mathrm{t}_{\mathrm{d}}=4000$

E Demo 3; XP-EHH; $t_{d}=4000$

D Demo 2; XP-nSL; $\mathrm{t}_{\mathrm{d}}=4000$

F Demo 3; XP-nSL; $\mathrm{t}_{\mathrm{d}}=4000$

Figure S9. Power difference between unphased implementations of XP-EHH (A, C, and E) and XP-nSL (B, D, and F) and phased implementations. Blue curves represent the power difference between the unphased and phased statistics when applied to unphased data (UN). Red curves represent the power difference between the unphased and phased statistics when applied to perfectly phased data (PH). Values greater than 0 indicate the unphased statistic had higher power. Applied to demographic histories Demo 1 (A and B), Demo 2 (C and D), and Demo 3 (E and F) with $\mathrm{n}=100$ diploid samples from each population. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=$ 4000 is the time in generations since the two populations diverged.

C Demo 2; XP-EHH; $\mathrm{t}_{\mathrm{d}}=8000$

E Demo 3; XP-EHH; $\mathrm{t}_{\mathrm{d}}=8000$

D Demo 2; XP-nSL; $\mathrm{t}_{\mathrm{d}}=8000$

F Demo 3; XP-nSL; $\mathrm{t}_{\mathrm{d}}=8000$

Figure S10. Power difference between unphased implementations of XP-EHH (A, C, and E) and XP-nSL (B, D, and F) and phased implementations. Blue curves represent the power difference between the unphased and phased statistics when applied to unphased data (UN). Red curves represent the power difference between the unphased and phased statistics when applied to perfectly phased data (PH). Values greater than 0 indicate the unphased statistic had higher power. Applied to demographic histories Demo 1 (A and B), Demo 2 (C and D), and Demo 3 (E and F) with $\mathrm{n}=100$ diploid samples from each population. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=$ 8000 is the time in generations since the two populations diverged.

C Demo 5; XP-EHH; $\mathrm{t}_{\mathrm{d}}=4000$

D Demo 5; XP-nSL; $\mathrm{t}_{\mathrm{d}}=4000$

Figure S11. Power curves for unphased implementations of XP-EHH (A and C) and XP-nSL (B and D) under demographic histories Demo 4 (A and B), and Demo 5 (C and D) with $\mathrm{n}=100$ diploid samples from each population. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=4000$ is the time in generations since the two populations diverged.

C Demo 5; XP-EHH; $\mathrm{t}_{\mathrm{d}}=8000$

D Demo 5; XP-nSL; $\mathrm{t}_{\mathrm{d}}=8000$

Figure S12. Power curves for unphased implementations of XP-EHH (A and C) and XP-nSL (B and D) under demographic histories Demo 4 (A and B), and Demo 5 (C and D) with $\mathrm{n}=100$ diploid samples from each population. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=8000$ is the time in generations since the two populations diverged.

C Demo 3: iHS; $\mathrm{t}_{\mathrm{d}}=4000$

E
Demo 4: iHS; $\mathrm{t}_{\mathrm{d}}=4000$

B Demo 1: nSL; $\mathrm{t}_{\mathrm{d}}=4000$

$F \quad$ Demo 4: nSL; $t_{d}=4000$

Figure S13. Power difference between unphased implementations of iHS (A, C, and E) and nSL (B, D, and F) and phased implementations. Blue curves represent the power difference between the unphased and phased statistics when applied to unphased data (UN). Red curves represent the power difference between the unphased and phased statistics when applied to perfectly phased data (PH). Values greater than 0 indicate the unphased statistic had higher power. Applied to demographic histories Demo 1 (A and B), Demo 3 (C and D), and Demo 4 (E and F) with $\mathrm{n}=100$ diploid samples. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=4000$ is the time in generations since the two populations diverged.

C Demo 3: iHS; $\mathrm{t}_{\mathrm{d}}=8000$

$E \quad$ Demo 4: iHS; $\mathrm{t}_{\mathrm{d}}=8000$

B Demo 1:nSL; $\mathrm{t}_{\mathrm{d}}=8000$

$F \quad$ Demo 4: nSL; $t_{d}=8000$

Figure S14. Power difference between unphased implementations of iHS (A, C, and E) and nSL (B, D, and F) and phased implementations. Blue curves represent the power difference between the unphased and phased statistics when applied to unphased data (UN). Red curves represent the power difference between the unphased and phased statistics when applied to perfectly phased data (PH). Values greater than 0 indicate the unphased statistic had higher power. Applied to demographic histories Demo 1 (A and $\mathrm{B})$, Demo 3 (C and D), and Demo 4 (E and F) with $\mathrm{n}=100$ diploid samples. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=8000$ is the time in generations since the two populations diverged.

C Demo 2: XP-EHH; $\mathrm{t}_{\mathrm{d}}=4000$

E Demo 3: XP-EHH; $\mathrm{t}_{\mathrm{d}}=4000$

D Demo 2: XP-nSL; $\mathrm{t}_{\mathrm{d}}=4000$

F Demo 3: XP-nSL; $\mathrm{t}_{\mathrm{d}}=4000$

Figure S15. Power difference between unphased implementations of XP-EHH (A, C, and E) and XP-nSL (B, D, and F) and phased implementations. Blue curves represent the power difference between the unphased and phased statistics when applied to unphased data (UN). Red curves represent the power difference between the unphased and phased statistics when applied to perfectly phased data (PH). Values greater than 0 indicate the unphased statistic had higher power. Applied to demographic histories Demo 1 (A and B), Demo 2 (C and D), and Demo 3 (E and F) with $\mathrm{n}=100$ diploid samples from each population. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=$ 4000 is the time in generations since the two populations diverged.

C Demo 2: XP-EHH; $\mathrm{t}_{\mathrm{d}}=8000$

D Demo 2: XP-nSL; $\mathrm{t}_{\mathrm{d}}=8000$

E Demo 3: XP-EHH; $t_{d}=8000$
F Demo 3: XP-nSL; $\mathrm{t}_{\mathrm{d}}=8000$

Figure S16. Power difference between unphased implementations of XP-EHH (A, C, and E) and XP-nSL (B, D, and F) and phased implementations. Blue curves represent the power difference between the unphased and phased statistics when applied to unphased data (UN). Red curves represent the power difference between the unphased and phased statistics when applied to perfectly phased data (PH). Values greater than 0 indicate the unphased statistic had higher power. Applied to demographic histories Demo 1 (A and B), Demo 2 (C and D), and Demo 3 (E and F) with $\mathrm{n}=100$ diploid samples from each population. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=$ 8000 is the time in generations since the two populations diverged.

C Demo 5: XP-EHH; $\mathrm{t}_{\mathrm{d}}=4000$

D Demo 5: XP-nSL; $\mathrm{t}_{\mathrm{d}}=4000$

Figure S17. Power difference between unphased implementations of XP-EHH (A and C) and XP-nSL (B and D) and phased implementations. Blue curves represent the power difference between the unphased and phased statistics when applied to unphased data (UN). Red curves represent the power difference between the unphased and phased statistics when applied to perfectly phased data (PH). Values greater than 0 indicate the unphased statistic had higher power. Applied to demographic histories Demo 4 (A and $\mathrm{B})$, and Demo $5(\mathrm{C}$ and D$)$ with $\mathrm{n}=100$ diploid samples from each population. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=4000$ is the time in generations since the two populations diverged.

D Demo 5: XP-nSL; $\mathrm{t}_{\mathrm{d}}=8000$

Table S18. Power difference between unphased implementations of XP-EHH (A and C) and XP-nSL (B and D) and phased implementations. Blue curves represent the power difference between the unphased and phased statistics when applied to unphased data (UN). Red curves represent the power difference between the unphased and phased statistics when applied to perfectly phased data (PH). Values greater than 0 indicate the unphased statistic had higher power. Applied to demographic histories Demo 4 (A and $\mathrm{B})$, and Demo $5(\mathrm{C}$ and D$)$ with $\mathrm{n}=100$ diploid samples from each population. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=8000$ is the time in generations since the two populations diverged.

A Demo $1 ; \mathrm{iHS} ; \mathrm{t}_{\mathrm{d}}=2000$

C Demo 3; iHS; $\mathrm{t}_{\mathrm{d}}=2000$

E

B Demo 1; nSL; $\mathrm{t}_{\mathrm{d}}=2000$

F Demo 4; nSL; $\mathrm{t}_{\mathrm{d}}=2000$

Figure S19. Power curves for unphased implementations of iHS (A, C, and E) and nSL (B, D, and F) under demographic histories Demo 1 (A and B), Demo 3 (C and D), and Demo 4 (E and F) with $\mathrm{n}=50$ diploid samples. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=2000$ is the time in generations since the two populations diverged.

E Demo 3; XP-EHH; $\mathrm{t}_{\mathrm{d}}=2000$

F Demo 3; XP-nSL; $\mathrm{t}_{\mathrm{d}}=2000$

Figure S20. Power curves for unphased implementations of XP-EHH (A, C, and E) and XP-nSL (B, D, and F) under demographic histories Demo 1 (A and B), Demo 2 (C and D), and Demo 3 (E and F) with n $=50$ diploid samples from each population. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=2000$ is the time in generations since the two populations diverged.

Figure S21. Power curves for unphased implementations of XP-EHH (A and C) and XP-nSL (B and D) under demographic histories Demo 4 (A and B), and Demo 5 (C and D) with $n=50$ diploid samples from each population. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=2000$ is the time in generations since the two populations diverged.

D Demo 3: nSL; $t_{d}=2000$

$E \quad$ Demo 4: $\mathrm{iHS} ; \mathrm{t}_{\mathrm{d}}=2000$

F Demo 4: $n S L ; t_{d}=2000$

Figure S22. Power difference between unphased implementations of iHS (A, C, and E) and nSL (B, D, and F) and phased implementations. Blue curves represent the power difference between the unphased and phased statistics when applied to unphased data (UN). Red curves represent the power difference between the unphased and phased statistics when applied to perfectly phased data (PH). Values greater than 0 indicate the unphased statistic had higher power. Applied to demographic histories Demo 1 (A and B), Demo 3 (C and D), and Demo 4 (E and F) with $\mathrm{n}=50$ diploid samples. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=2000$ is the time in generations since the two populations diverged.

C Demo 2: XP-EHH; $t_{d}=2000$

E Demo 3: XP-EHH; $\mathrm{t}_{\mathrm{d}}=2000$
F Demo 3: XP-nSL; $\mathrm{t}_{\mathrm{d}}=2000$

Figure S23. Power difference between unphased implementations of XP-EHH (A, C, and E) and XP-nSL (B, D, and F) and phased implementations. Blue curves represent the power difference between the unphased and phased statistics when applied to unphased data (UN). Red curves represent the power difference between the unphased and phased statistics when applied to perfectly phased data (PH). Values greater than 0 indicate the unphased statistic had higher power. Applied to demographic histories Demo 1 (A and B), Demo 2 (C and D), and Demo 3 (E and F) with $\mathrm{n}=50$ diploid samples from each population. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=$ 2000 is the time in generations since the two populations diverged.

Figure S24. Power difference between unphased implementations of XP-EHH (A and C) and XP-nSL (B and D) and phased implementations. Blue curves represent the power difference between the unphased and phased statistics when applied to unphased data (UN). Red curves represent the power difference between the unphased and phased statistics when applied to perfectly phased data (PH). Values greater than 0 indicate the unphased statistic had higher power. Applied to demographic histories Demo 4 (A and B), and Demo 5 (C and D) with $\mathrm{n}=50$ diploid samples from each population. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=2000$ is the time in generations since the two populations diverged.

B Demo 1; nSL; $\mathrm{t}_{\mathrm{d}}=4000$

D Demo 3; nSL; $t_{d}=4000$

$F \quad$ Demo 4; nSL; $t_{d}=4000$

Figure S25. Power curves for unphased implementations of iHS (A, C, and E) and nSL (B, D, and F) under demographic histories Demo 1 (A and B), Demo 3 (C and D), and Demo 4 (E and F) with $\mathrm{n}=50$ diploid samples. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=4000$ is the time in generations since the two populations diverged.

B Demo 1; nSL; $\mathrm{t}_{\mathrm{d}}=8000$

C Demo 3; $\mathrm{iHS} ; \mathrm{t}_{\mathrm{d}}=8000$

D Demo 3; nSL; $t_{d}=8000$

E

F Demo 4; nSL; $\mathrm{t}_{\mathrm{d}}=8000$

Figure S26. Power curves for unphased implementations of iHS (A, C, and E) and nSL (B, D, and F) under demographic histories Demo 1 (A and B), Demo 3 (C and D), and Demo 4 (E and F) with $n=50$ diploid samples. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=8000$ is the time in generations since the two populations diverged.

A

E Demo 3; XP-EHH; $\mathrm{t}_{\mathrm{d}}=4000$

B Demo 1; XP-nSL; $\mathrm{t}_{\mathrm{d}}=4000$

F Demo 3; XP-nSL; $\mathrm{t}_{\mathrm{d}}=4000$

Figure S27. Power difference between unphased implementations of XP-EHH (A, C, and E) and XP-nSL (B, D, and F) and phased implementations. Blue curves represent the power difference between the unphased and phased statistics when applied to unphased data (UN). Red curves represent the power difference between the unphased and phased statistics when applied to perfectly phased data (PH). Values greater than 0 indicate the unphased statistic had higher power. Applied to demographic histories Demo 1 (A and B), Demo 2 (C and D), and Demo 3 (E and F) with $\mathrm{n}=50$ diploid samples from each population. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=$ 4000 is the time in generations since the two populations diverged.

A Demo 1; XP-EHH; $\mathrm{t}_{\mathrm{d}}=8000$

C Demo 2; XP-EHH; $\mathrm{t}_{\mathrm{d}}=8000$

E Demo 3; XP-EHH; $\mathrm{t}_{\mathrm{d}}=8000$

B Demo 1; XP-nSL; $\mathrm{t}_{\mathrm{d}}=8000$

F Demo 3; XP-nSL; $\mathrm{t}_{\mathrm{d}}=8000$

Figure S28. Power difference between unphased implementations of XP-EHH (A, C, and E) and XP-nSL (B, D, and F) and phased implementations. Blue curves represent the power difference between the unphased and phased statistics when applied to unphased data (UN). Red curves represent the power difference between the unphased and phased statistics when applied to perfectly phased data (PH). Values greater than 0 indicate the unphased statistic had higher power. Applied to demographic histories Demo 1 (A and B), Demo 2 (C and D), and Demo 3 (E and F) with $\mathrm{n}=50$ diploid samples from each population. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=$ 8000 is the time in generations since the two populations diverged.

Figure S29. Power curves for unphased implementations of XP-EHH (A and C) and XP-nSL (B and D) under demographic histories Demo 4 (A and B), and Demo 5 (C and D) with $n=50$ diploid samples from each population. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=4000$ is the time in generations since the two populations diverged.

Figure S30. Power curves for unphased implementations of XP-EHH (A and C) and XP-nSL (B and D) under demographic histories Demo 4 (A and B), and Demo 5 (C and D) with $\mathrm{n}=50$ diploid samples from each population. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=8000$ is the time in generations since the two populations diverged.

$$
\text { C } \quad \text { Demo 3: } \mathrm{iHS} ; \mathrm{t}_{\mathrm{d}}=4000
$$

E Demo 4: $\mathrm{iHS} ; \mathrm{t}_{\mathrm{d}}=4000$

D Demo 3: nSL; $\mathrm{t}_{\mathrm{d}}=4000$

F Demo 4: nSL; $\mathrm{t}_{\mathrm{d}}=4000$

Figure S31. Power difference between unphased implementations of iHS (A, C, and E) and nSL (B, D, and F) and phased implementations. Blue curves represent the power difference between the unphased and phased statistics when applied to unphased data (UN). Red curves represent the power difference between the unphased and phased statistics when applied to perfectly phased data (PH). Values greater than 0 indicate the unphased statistic had higher power. Applied to demographic histories Demo 1 (A and B), Demo 3 (C and D), and Demo 4 (E and F) with $\mathrm{n}=50$ diploid samples. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=4000$ is the time in generations since the two populations diverged.

D Demo 3: $n S L ; t_{d}=8000$

F \quad Demo 4: $n S L ; t_{d}=8000$

Figure S32. Power difference between unphased implementations of iHS (A, C, and E) and nSL (B, D, and F) and phased implementations. Blue curves represent the power difference between the unphased and phased statistics when applied to unphased data (UN). Red curves represent the power difference between the unphased and phased statistics when applied to perfectly phased data (PH). Values greater than 0 indicate the unphased statistic had higher power. Applied to demographic histories Demo 1 (A and B), Demo 3 (C and D), and Demo 4 (E and F) with $\mathrm{n}=50$ diploid samples. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=8000$ is the time in generations since the two populations diverged.

E Demo 3: XP-EHH; $t_{d}=4000$

C Demo 2: XP-EHH; $\mathrm{t}_{\mathrm{d}}=4000$

F Demo 3: XP-nSL; $\mathrm{t}_{\mathrm{d}}=4000$

Figure S33. Power difference between unphased implementations of XP-EHH (A, C, and E) and XP-nSL (B, D, and F) and phased implementations. Blue curves represent the power difference between the unphased and phased statistics when applied to unphased data (UN). Red curves represent the power difference between the unphased and phased statistics when applied to perfectly phased data (PH). Values greater than 0 indicate the unphased statistic had higher power. Applied to demographic histories Demo 1 (A and B), Demo 2 (C and D), and Demo 3 (E and F) with $\mathrm{n}=50$ diploid samples from each population. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=$ 4000 is the time in generations since the two populations diverged.

D Demo 2: XP-nSL; $\mathrm{t}_{\mathrm{d}}=8000$

F Demo 3: XP-nSL; $t_{d}=8000$

Figure S34. Power difference between unphased implementations of XP-EHH (A, C, and E) and XP-nSL (B, D, and F) and phased implementations. Blue curves represent the power difference between the unphased and phased statistics when applied to unphased data (UN). Red curves represent the power difference between the unphased and phased statistics when applied to perfectly phased data (PH). Values greater than 0 indicate the unphased statistic had higher power. Applied to demographic histories Demo 1 (A and B), Demo 2 (C and D), and Demo 3 (E and F) with $\mathrm{n}=50$ diploid samples from each population. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=$ 8000 is the time in generations since the two populations diverged.

Figure S35. Power difference between unphased implementations of XP-EHH (A and C) and XP-nSL (B and D) and phased implementations. Blue curves represent the power difference between the unphased and phased statistics when applied to unphased data (UN). Red curves represent the power difference between the unphased and phased statistics when applied to perfectly phased data (PH). Values greater than 0 indicate the unphased statistic had higher power. Applied to demographic histories Demo 4 (A and B), and Demo $5(\mathrm{C}$ and D$)$ with $\mathrm{n}=50$ diploid samples from each population. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=4000$ is the time in generations since the two populations diverged.

Table S36. Power difference between unphased implementations of XP-EHH (A and C) and XP-nSL (B and D) and phased implementations. Blue curves represent the power difference between the unphased and phased statistics when applied to unphased data (UN). Red curves represent the power difference between the unphased and phased statistics when applied to perfectly phased data (PH). Values greater than 0 indicate the unphased statistic had higher power. Applied to demographic histories Demo 4 (A and B), and Demo $5(\mathrm{C}$ and D$)$ with $\mathrm{n}=50$ diploid samples from each population. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=8000$ is the time in generations since the two populations diverged.

C Demo 3; iHS; $\mathrm{t}_{\mathrm{d}}=2000$

E

F Demo 4; nSL; $\mathrm{t}_{\mathrm{d}}=2000$

Figure S37. Power curves for unphased implementations of iHS (A, C, and E) and nSL (B, D, and F) under demographic histories Demo 1 (A and B), Demo 3 (C and D), and Demo 4 (E and F) with $\mathrm{n}=20$ diploid samples. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=2000$ is the time in generations since the two populations diverged.

F Demo 3; XP-nSL; $\mathrm{t}_{\mathrm{d}}=2000$

Figure S38. Power curves for unphased implementations of XP-EHH (A, C, and E) and XP-nSL (B, D, and F) under demographic histories Demo 1 (A and B), Demo 2 (C and D), and Demo 3 (E and F) with n $=20$ diploid samples from each population. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=2000$ is the time in generations since the two populations diverged.

Figure S39. Power curves for unphased implementations of XP-EHH (A and C) and XP-nSL (B and D) under demographic histories Demo 4 (A and B), and Demo 5 (C and D) with $\mathrm{n}=20$ diploid samples from each population. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=2000$ is the time in generations since the two populations diverged.

D Demo 3: nSL; $t_{d}=2000$

E Demo 4: iHS; $\mathrm{t}_{\mathrm{d}}=2000$

F Demo 4: $n S L ; t_{d}=2000$

Figure S40. Power difference between unphased implementations of iHS (A, C, and E) and nSL (B, D, and F) and phased implementations. Blue curves represent the power difference between the unphased and phased statistics when applied to unphased data (UN). Red curves represent the power difference between the unphased and phased statistics when applied to perfectly phased data (PH). Values greater than 0 indicate the unphased statistic had higher power. Applied to demographic histories Demo 1 (A and B), Demo 3 (C and D), and Demo 4 (E and F) with $\mathrm{n}=20$ diploid samples. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=2000$ is the time in generations since the two populations diverged.

C Demo 2: XP-EHH; $t_{d}=2000$

E Demo 3: $\mathrm{XP}-E H H ; \mathrm{t}_{\mathrm{d}}=2000$
F Demo 3: XP-nSL; $\mathrm{t}_{\mathrm{d}}=2000$

Figure S41. Power difference between unphased implementations of XP-EHH (A, C, and E) and XP-nSL (B, D, and F) and phased implementations. Blue curves represent the power difference between the unphased and phased statistics when applied to unphased data (UN). Red curves represent the power difference between the unphased and phased statistics when applied to perfectly phased data (PH). Values greater than 0 indicate the unphased statistic had higher power. Applied to demographic histories Demo 1 (A and B), Demo 2 (C and D), and Demo 3 (E and F) with $\mathrm{n}=20$ diploid samples from each population. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=$ 2000 is the time in generations since the two populations diverged.

Figure S42. Power difference between unphased implementations of XP-EHH (A and C) and XP-nSL (B and D) and phased implementations. Blue curves represent the power difference between the unphased and phased statistics when applied to unphased data (UN). Red curves represent the power difference between the unphased and phased statistics when applied to perfectly phased data (PH). Values greater than 0 indicate the unphased statistic had higher power. Applied to demographic histories Demo 4 (A and B), and Demo $5(\mathrm{C}$ and D$)$ with $\mathrm{n}=20$ diploid samples from each population. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=2000$ is the time in generations since the two populations diverged.

E

F \quad Demo 4; nSL; $t_{d}=4000$

Figure S43. Power curves for unphased implementations of iHS (A, C, and E) and nSL (B, D, and F) under demographic histories Demo 1 (A and B), Demo 3 (C and D), and Demo 4 (E and F) with $\mathrm{n}=20$ diploid samples. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=4000$ is the time in generations since the two populations diverged.

C Demo 3; iHS; $\mathrm{t}_{\mathrm{d}}=8000$

D Demo 3; nSL; $\mathrm{t}_{\mathrm{d}}=8000$

E Demo 4; $\mathrm{HS} ; \mathrm{t}_{\mathrm{d}}=8000$

F Demo 4; nSL; $\mathrm{t}_{\mathrm{d}}=8000$

Figure S44. Power curves for unphased implementations of iHS (A, C, and E) and nSL (B, D, and F) under demographic histories Demo 1 (A and B), Demo 3 (C and D), and Demo 4 (E and F) with $\mathrm{n}=20$ diploid samples. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=8000$ is the time in generations since the two populations diverged.

E Demo 3; XP-EHH; $\mathrm{t}_{\mathrm{d}}=4000$

B Demo 1; XP-nSL; $\mathrm{t}_{\mathrm{d}}=4000$

F Demo 3; XP-nSL; $\mathrm{t}_{\mathrm{d}}=4000$

Figure S45. Power difference between unphased implementations of XP-EHH (A, C, and E) and XP-nSL (B, D, and F) and phased implementations. Blue curves represent the power difference between the unphased and phased statistics when applied to unphased data (UN). Red curves represent the power difference between the unphased and phased statistics when applied to perfectly phased data (PH). Values greater than 0 indicate the unphased statistic had higher power. Applied to demographic histories Demo 1 (A and B), Demo 2 (C and D), and Demo 3 (E and F) with $\mathrm{n}=20$ diploid samples from each population. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=$ 4000 is the time in generations since the two populations diverged.

E Demo 3; XP-EHH; $t_{d}=8000$

B Demo 1; XP-nSL; $\mathrm{t}_{\mathrm{d}}=8000$

F Demo 3; XP-nSL; $\mathrm{t}_{\mathrm{d}}=8000$

Figure S46. Power difference between unphased implementations of XP-EHH (A, C, and E) and XP-nSL (B, D, and F) and phased implementations. Blue curves represent the power difference between the unphased and phased statistics when applied to unphased data (UN). Red curves represent the power difference between the unphased and phased statistics when applied to perfectly phased data (PH). Values greater than 0 indicate the unphased statistic had higher power. Applied to demographic histories Demo 1 (A and B), Demo 2 (C and D), and Demo 3 (E and F) with $\mathrm{n}=20$ diploid samples from each population. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=$ 8000 is the time in generations since the two populations diverged.

Figure S47. Power curves for unphased implementations of XP-EHH (A and C) and XP-nSL (B and D) under demographic histories Demo 4 (A and B), and Demo 5 (C and D) with $n=20$ diploid samples from each population. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=4000$ is the time in generations since the two populations diverged.

Figure S48. Power curves for unphased implementations of XP-EHH (A and C) and XP-nSL (B and D) under demographic histories Demo 4 (A and B), and Demo 5 (C and D) with $n=20$ diploid samples from each population. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=8000$ is the time in generations since the two populations diverged.

D Demo 3: nSL; $\mathrm{t}_{\mathrm{d}}=4000$

F \quad Demo 4: $n S L ; t_{d}=4000$

Figure S49. Power difference between unphased implementations of iHS (A, C, and E) and nSL (B, D, and F) and phased implementations. Blue curves represent the power difference between the unphased and phased statistics when applied to unphased data (UN). Red curves represent the power difference between the unphased and phased statistics when applied to perfectly phased data (PH). Values greater than 0 indicate the unphased statistic had higher power. Applied to demographic histories Demo 1 (A and B), Demo 3 (C and D), and Demo 4 (E and F) with $\mathrm{n}=20$ diploid samples. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=4000$ is the time in generations since the two populations diverged.

E Demo 4: iHS; $\mathrm{t}_{\mathrm{d}}=8000$

D Demo 3: nSL; $\mathrm{t}_{\mathrm{d}}=8000$

F \quad Demo 4: $n S L ; t_{d}=8000$

Figure S50. Power difference between unphased implementations of iHS (A, C, and E) and nSL (B, D, and F) and phased implementations. Blue curves represent the power difference between the unphased and phased statistics when applied to unphased data (UN). Red curves represent the power difference between the unphased and phased statistics when applied to perfectly phased data (PH). Values greater than 0 indicate the unphased statistic had higher power. Applied to demographic histories Demo 1 (A and B), Demo 3 (C and D), and Demo 4 (E and F) with $\mathrm{n}=20$ diploid samples. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=8000$ is the time in generations since the two populations diverged.

C Demo 2: XP-EHH; $\mathrm{t}_{\mathrm{d}}=4000$

F Demo 3: XP-nSL; $t_{d}=4000$

E Demo 3: XP-EHH; $t_{d}=4000$

Figure S51. Power difference between unphased implementations of XP-EHH (A, C, and E) and XP-nSL (B, D, and F) and phased implementations. Blue curves represent the power difference between the unphased and phased statistics when applied to unphased data (UN). Red curves represent the power difference between the unphased and phased statistics when applied to perfectly phased data (PH). Values greater than 0 indicate the unphased statistic had higher power. Applied to demographic histories Demo 1 (A and B), Demo 2 (C and D), and Demo 3 (E and F) with $\mathrm{n}=20$ diploid samples from each population. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=$ 4000 is the time in generations since the two populations diverged.

D Demo 2: XP-nSL; $\mathrm{t}_{\mathrm{d}}=8000$

E Demo 3: XP-EHH; $\mathrm{t}_{\mathrm{d}}=8000$

F Demo 3: XP-nSL; $\mathrm{t}_{\mathrm{d}}=8000$

Figure S52. Power difference between unphased implementations of XP-EHH (A, C, and E) and XP-nSL (B, D, and F) and phased implementations. Blue curves represent the power difference between the unphased and phased statistics when applied to unphased data (UN). Red curves represent the power difference between the unphased and phased statistics when applied to perfectly phased data (PH). Values greater than 0 indicate the unphased statistic had higher power. Applied to demographic histories Demo 1 (A and B), Demo 2 (C and D), and Demo 3 (E and F) with $\mathrm{n}=20$ diploid samples from each population. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=$ 8000 is the time in generations since the two populations diverged.

Figure S53. Power difference between unphased implementations of XP-EHH (A and C) and XP-nSL (B and D) and phased implementations. Blue curves represent the power difference between the unphased and phased statistics when applied to unphased data (UN). Red curves represent the power difference between the unphased and phased statistics when applied to perfectly phased data (PH). Values greater than 0 indicate the unphased statistic had higher power. Applied to demographic histories Demo 4 (A and B), and Demo $5(\mathrm{C}$ and D$)$ with $\mathrm{n}=20$ diploid samples from each population. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=4000$ is the time in generations since the two populations diverged.

Table S54. Power difference between unphased implementations of XP-EHH (A and C) and XP-nSL (B and D) and phased implementations. Blue curves represent the power difference between the unphased and phased statistics when applied to unphased data (UN). Red curves represent the power difference between the unphased and phased statistics when applied to perfectly phased data (PH). Values greater than 0 indicate the unphased statistic had higher power. Applied to demographic histories Demo 4 (A and B), and Demo $5(\mathrm{C}$ and D$)$ with $\mathrm{n}=20$ diploid samples from each population. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=8000$ is the time in generations since the two populations diverged.

A Demo 1; iHS; $\mathrm{t}_{\mathrm{d}}=2000$

B Demo 1; nSL; $\mathrm{t}_{\mathrm{d}}=2000$

E
Demo 4; $\mathrm{iHS} ; \mathrm{t}_{\mathrm{d}}=2000$

F \quad Demo 4; nSL; $\mathrm{t}_{\mathrm{d}}=2000$

Figure S55. Power curves for unphased implementations of iHS (A, C, and E) and nSL (B, D, and F) under demographic histories Demo 1 (A and B), Demo 3 (C and D), and Demo 4 (E and F) with $\mathrm{n}=10$ diploid samples. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=2000$ is the time in generations since the two populations diverged.

C Demo 2; XP-EHH; $\mathrm{t}_{\mathrm{d}}=2000$

E Demo 3; XP-EHH; $\mathrm{t}_{\mathrm{d}}=2000$

B Demo 1; XP-nSL; $\mathrm{t}_{\mathrm{d}}=2000$

F Demo 3; XP-nSL; $\mathrm{t}_{\mathrm{d}}=2000$

Figure S56. Power curves for unphased implementations of XP-EHH (A, C, and E) and XP-nSL (B, D, and F) under demographic histories Demo 1 (A and B), Demo 2 (C and D), and Demo 3 (E and F) with n $=10$ diploid samples from each population. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=2000$ is the time in generations since the two populations diverged.

C Demo 5; XP-EHH; $\mathrm{t}_{\mathrm{d}}=2000$

Figure S57. Power curves for unphased implementations of XP-EHH (A and C) and XP-nSL (B and D) under demographic histories Demo 4 (A and B), and Demo 5 (C and D) with $n=10$ diploid samples from each population. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=2000$ is the time in generations since the two populations diverged.

D Demo 3: nSL; $t_{d}=2000$

E Demo 4: iHS; $\mathrm{t}_{\mathrm{d}}=2000$

F \quad Demo 4: $n S L ; t_{d}=2000$

Figure S58. Power difference between unphased implementations of iHS (A, C, and E) and nSL (B, D, and F) and phased implementations. Blue curves represent the power difference between the unphased and phased statistics when applied to unphased data (UN). Red curves represent the power difference between the unphased and phased statistics when applied to perfectly phased data (PH). Values greater than 0 indicate the unphased statistic had higher power. Applied to demographic histories Demo 1 (A and B), Demo 3 (C and D), and Demo 4 (E and F) with $\mathrm{n}=10$ diploid samples. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=2000$ is the time in generations since the two populations diverged.

C Demo 2: XP-EHH; $t_{d}=2000$

E Demo 3: XP-EHH; $t_{d}=2000$
F Demo 3: XP-nSL; $t_{d}=2000$

Figure S59. Power difference between unphased implementations of XP-EHH (A, C, and E) and XP-nSL (B, D, and F) and phased implementations. Blue curves represent the power difference between the unphased and phased statistics when applied to unphased data (UN). Red curves represent the power difference between the unphased and phased statistics when applied to perfectly phased data (PH). Values greater than 0 indicate the unphased statistic had higher power. Applied to demographic histories Demo 1 (A and B), Demo 2 (C and D), and Demo 3 (E and F) with $\mathrm{n}=10$ diploid samples from each population. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=$ 2000 is the time in generations since the two populations diverged.

Figure S60. Power difference between unphased implementations of XP-EHH (A and C) and XP-nSL (B and D) and phased implementations. Blue curves represent the power difference between the unphased and phased statistics when applied to unphased data (UN). Red curves represent the power difference between the unphased and phased statistics when applied to perfectly phased data (PH). Values greater than 0 indicate the unphased statistic had higher power. Applied to demographic histories Demo 4 (A and $\mathrm{B})$, and Demo $5(\mathrm{C}$ and D$)$ with $\mathrm{n}=10$ diploid samples from each population. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=2000$ is the time in generations since the two populations diverged.

A Demo 1; $\mathrm{iHS} ; \mathrm{t}_{\mathrm{d}}=4000$

E

F Demo 4; nSL; $\mathrm{t}_{\mathrm{d}}=4000$

Figure S61. Power curves for unphased implementations of iHS (A, C, and E) and nSL (B, D, and F) under demographic histories Demo 1 (A and B), Demo 3 (C and D), and Demo 4 (E and F) with $\mathrm{n}=10$ diploid samples. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=4000$ is the time in generations since the two populations diverged.

A Demo 1; $\mathrm{iHS} ; \mathrm{t}_{\mathrm{d}}=8000$

B Demo 1; nSL; $\mathrm{t}_{\mathrm{d}}=8000$

E

F Demo 4; nSL; $\mathrm{t}_{\mathrm{d}}=8000$

Figure S62. Power curves for unphased implementations of iHS (A, C, and E) and nSL (B, D, and F) under demographic histories Demo 1 (A and B), Demo 3 (C and D), and Demo 4 (E and F) with $\mathrm{n}=10$ diploid samples. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=8000$ is the time in generations since the two populations diverged.

| A | Demo $1 ;$ XP-EHH; $t_{d}=4000$ |
| :--- | :--- | :--- | :--- |

C Demo 2; XP-EHH; $\mathrm{t}_{\mathrm{d}}=4000$

E Demo 3; XP-EHH; $\mathrm{t}_{\mathrm{d}}=4000$

B Demo 1; XP-nSL; $\mathrm{t}_{\mathrm{d}}=4000$

F Demo 3; XP-nSL; $\mathrm{t}_{\mathrm{d}}=4000$

Figure S63. Power difference between unphased implementations of XP-EHH (A, C, and E) and XP-nSL (B, D, and F) and phased implementations. Blue curves represent the power difference between the unphased and phased statistics when applied to unphased data (UN). Red curves represent the power difference between the unphased and phased statistics when applied to perfectly phased data (PH). Values greater than 0 indicate the unphased statistic had higher power. Applied to demographic histories Demo 1 (A and B), Demo 2 (C and D), and Demo 3 (E and F) with $\mathrm{n}=10$ diploid samples from each population. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=$ 4000 is the time in generations since the two populations diverged.

A Demo 1; XP-EHH; $\mathrm{t}_{\mathrm{d}}=8000$

C Demo 2; XP-EHH; $\mathrm{t}_{\mathrm{d}}=8000$

E Demo 3; XP-EHH; $\mathrm{t}_{\mathrm{d}}=8000$

B Demo 1; XP-nSL; $\mathrm{t}_{\mathrm{d}}=8000$

F Demo 3; XP-nSL; $\mathrm{t}_{\mathrm{d}}=8000$

Figure S64. Power difference between unphased implementations of XP-EHH (A, C, and E) and XP-nSL (B, D, and F) and phased implementations. Blue curves represent the power difference between the unphased and phased statistics when applied to unphased data (UN). Red curves represent the power difference between the unphased and phased statistics when applied to perfectly phased data (PH). Values greater than 0 indicate the unphased statistic had higher power. Applied to demographic histories Demo 1 (A and B), Demo 2 (C and D), and Demo 3 (E and F) with $\mathrm{n}=10$ diploid samples from each population. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=$ 8000 is the time in generations since the two populations diverged.

Figure S65. Power curves for unphased implementations of XP-EHH (A and C) and XP-nSL (B and D) under demographic histories Demo 4 (A and B), and Demo 5 (C and D) with $n=10$ diploid samples from each population. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=4000$ is the time in generations since the two populations diverged.

Figure S66. Power curves for unphased implementations of XP-EHH (A and C) and XP-nSL (B and D) under demographic histories Demo 4 (A and B), and Demo 5 (C and D) with $n=10$ diploid samples from each population. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=8000$ is the time in generations since the two populations diverged.

D Demo 3: $n S L ; t_{d}=4000$

E Demo 4: $\mathrm{iHS} ; \mathrm{t}_{\mathrm{d}}=4000$

F Demo 4: nSL; $t_{d}=4000$

Figure S67. Power difference between unphased implementations of iHS (A, C, and E) and nSL (B, D, and F) and phased implementations. Blue curves represent the power difference between the unphased and phased statistics when applied to unphased data (UN). Red curves represent the power difference between the unphased and phased statistics when applied to perfectly phased data (PH). Values greater than 0 indicate the unphased statistic had higher power. Applied to demographic histories Demo 1 (A and B), Demo 3 (C and D), and Demo 4 (E and F) with $\mathrm{n}=10$ diploid samples. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=4000$ is the time in generations since the two populations diverged.

C Demo 3: $\mathrm{iHS} ; \mathrm{t}_{\mathrm{d}}=8000$

F \quad Demo 4: $n S L ; t_{d}=8000$

Figure S68. Power difference between unphased implementations of iHS (A, C, and E) and nSL (B, D, and F) and phased implementations. Blue curves represent the power difference between the unphased and phased statistics when applied to unphased data (UN). Red curves represent the power difference between the unphased and phased statistics when applied to perfectly phased data (PH). Values greater than 0 indicate the unphased statistic had higher power. Applied to demographic histories Demo 1 (A and B), Demo 3 (C and D), and Demo 4 (E and F) with $\mathrm{n}=10$ diploid samples. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=8000$ is the time in generations since the two populations diverged.

C Demo 2: XP-EHH; $\mathrm{t}_{\mathrm{d}}=4000$

F Demo 3: XP-nSL; $t_{d}=4000$

Figure S69. Power difference between unphased implementations of XP-EHH (A, C, and E) and XP-nSL (B, D, and F) and phased implementations. Blue curves represent the power difference between the unphased and phased statistics when applied to unphased data (UN). Red curves represent the power difference between the unphased and phased statistics when applied to perfectly phased data (PH). Values greater than 0 indicate the unphased statistic had higher power. Applied to demographic histories Demo 1 (A and B), Demo 2 (C and D), and Demo 3 (E and F) with $\mathrm{n}=10$ diploid samples from each population. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=$ 4000 is the time in generations since the two populations diverged.

C Demo 2: XP-EHH; $\mathrm{t}_{\mathrm{d}}=8000$

F Demo 3: XP-nSL; $\mathrm{t}_{\mathrm{d}}=8000$

Figure S70. Power difference between unphased implementations of XP-EHH (A, C, and E) and XP-nSL (B, D, and F) and phased implementations. Blue curves represent the power difference between the unphased and phased statistics when applied to unphased data (UN). Red curves represent the power difference between the unphased and phased statistics when applied to perfectly phased data (PH). Values greater than 0 indicate the unphased statistic had higher power. Applied to demographic histories Demo 1 (A and B), Demo 2 (C and D), and Demo 3 (E and F) with $\mathrm{n}=10$ diploid samples from each population. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=$ 8000 is the time in generations since the two populations diverged.

Figure S71. Power difference between unphased implementations of XP-EHH (A and C) and XP-nSL (B and D) and phased implementations. Blue curves represent the power difference between the unphased and phased statistics when applied to unphased data (UN). Red curves represent the power difference between the unphased and phased statistics when applied to perfectly phased data (PH). Values greater than 0 indicate the unphased statistic had higher power. Applied to demographic histories Demo 4 (A and $\mathrm{B})$, and Demo $5(\mathrm{C}$ and D$)$ with $\mathrm{n}=10$ diploid samples from each population. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=4000$ is the time in generations since the two populations diverged.

Table S72. Power difference between unphased implementations of XP-EHH (A and C) and XP-nSL (B and D) and phased implementations. Blue curves represent the power difference between the unphased and phased statistics when applied to unphased data (UN). Red curves represent the power difference between the unphased and phased statistics when applied to perfectly phased data (PH). Values greater than 0 indicate the unphased statistic had higher power. Applied to demographic histories Demo 4 (A and B), and Demo $5(\mathrm{C}$ and D$)$ with $\mathrm{n}=10$ diploid samples from each population. s is the selection coefficient, f is the frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation, e is the frequency at which selection began, and $t_{d}=8000$ is the time in generations since the two populations diverged.

