
Over the past few years, genome-wide association studies  
(GWA studies) have produced numerous successes in 
identifying genetic variants that contribute to com-
plex human traits1,2. Several factors are recognized3,4 as 
having markedly increased the number of genotype–
phenotype associations documented for a wide range  
of phenotypes5,6. These include increasingly dense sets of  
genetic markers and larger sample sizes, improved 
genomic variation resources, and new statistical tech-
niques for genotype imputation7,8 and meta-analysis9,10 
that leverage these resources.

However, with a few exceptions, GWA studies have 
been centred on populations of European descent 
(BOX 1), and the degree to which knowledge gained from 
these studies is transferable to other populations has not 
been extensively investigated. Researchers have begun 
to seek additional groups in which to investigate widely 
distributed phenotypes, to study new phenotypes that 
are more prevalent in non-European populations and 
to establish the generality of findings obtained initially 
in Europeans and European-Americans. Indeed, recent 
reports on Chinese11,12, Japanese13,14 and Korean15,16  
populations and on Pacific Islanders from Kosrae17,18 are  
some of the first in a new wave of GWA studies in  
non-European populations.

GWA studies in non-European populations may 
raise several challenges. Will the same results observed 
in Europeans be detected in diverse worldwide popula-
tions? Will causal variants have similar allele frequen-
cies and disease risk in different populations? What 
factors will be the sources of differing results across 
groups? As the human genetics community diversifies 
the populations in which GWA studies are performed, 

the effort that is likely to be expended on this research 
program motivates careful consideration of the issues 
involved in designing the new wave of GWA studies and 
in interpreting their outcomes.

We argue that expansion of GWA studies to diverse 
populations is important not only for the ultimate goal 
of bringing medical advances resulting from genome 
science to populations worldwide but also for the con-
siderable scientific benefits in characterizing risk vari-
ants beyond what can be achieved with populations of 
European descent alone. We begin by reviewing factors 
that have contributed to the successes of GWA stud-
ies in Europeans. Next, we describe how considera-
tion of diverse populations has the potential to build 
on these successes. We then discuss the challenges 
inherent in GWA studies in diverse populations and 
the role of population-genetic modelling in investi-
gating variation among GWA results across popula-
tions. We conclude with a discussion of how further 
development of genomic resources has the poten-
tial to improve prospects for GWA studies in diverse  
worldwide populations.

Successes in Europeans
Factors influencing the choice of study population. 
Owing to the expense involved in the execution of 
GWA studies, it was sensible to perform the first studies 
in a set of closely related populations for which shared 
resources could be used. As a first step, a focused effort 
in which GWA studies of many phenotypes were con-
ducted largely in the same populations — and even in the 
same samples — had several advantages over a dispersed 
effort that would have considered a larger collection of 

*Department of Human 
Genetics, University of 
Michigan, Ann Arbor, 
Michigan 48109, USA.
‡Center for Computational 
Medicine and Bioinformatics, 
University of Michigan, Ann 
Arbor, Michigan 48109, USA.
§Life Sciences Institute, 
University of Michigan, Ann 
Arbor, Michigan 48109, USA.
||Department of Biostatistics, 
University of Michigan, Ann 
Arbor, Michigan 48109, USA.
¶Center for Statistical 
Genetics, University of 
Michigan, Ann Arbor, 
Michigan 48109, USA.
#These authors contributed 
equally to this work.
Correspondence to N.A.R.  
e‑mail: rnoah@umich.edu
doi:10.1038/nrg2760

Genome-wide association 
studies
Study designs in which  
many markers spread across  
a genome are genotyped,  
and tests of statistical 
association with a phenotype 
are performed locally along 
the genome.

Genotype imputation
Probabilistic prediction of 
genotypes that have not been 
measured experimentally.

Genome-wide association studies in 
diverse populations
Noah A. Rosenberg*‡§||, Lucy Huang‡#, Ethan M. Jewett‡#, Zachary A. Szpiech‡#, 
Ivana Jankovic‡# and Michael Boehnke||¶
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Box 1 | Populations in past genome-wide association studies

To assess the extent to which non-European populations have been 
incorporated into genome-wide association (GWA) studies, we examined 
the distribution of study populations across 492 GWA articles in the 
National Human Genome Research Institute (NHGRI) catalogue of GWA 
results6,130.  This database provides a manually curated list of 
SNP–phenotype associations (P < 10–5) identified in studies with at least 
100,000 SNPs. Article classifications were assessed independently by two 
raters, with discrepancies resolved by consensus in discussions with a 
third rater. In the figure, part a tabulates classifications based on whether 
articles used individuals of European descent, individuals of non-European 
descent or a combination of individuals of European and non- 
European descent. Eight articles that provided insufficient information 
about study subjects are omitted, so that each bar represents 80 or 81 
articles, grouped by date. The later date ranges are narrower, indicating 
that in more recent time periods, more studies have been performed per  
unit time.

The figure illustrates that most studies (~75%) use populations of European 
descent exclusively. It is likely that this value underestimates the true 
percentage of GWA effort devoted to populations of European descent,  
as the tabulation counts as ‘both European and non-European’ studies 
in which non-Europeans comprise a small fraction of overall study 
subjects or in which non-Europeans are part of replication samples 
examined only for a small number of SNPs. However, a slight trend over 
time suggests that studies with non-European populations have begun 
to constitute a larger proportion of the full collection of studies.

We further examined the representation of non-European populations by 
considering the diversity of the investigators performing the studies (part b). 
For each article analysed, we assigned weight n

k
/n to country k, where  

n
k
 is the number of authors with affiliations in country k (splitting multiply  

affiliated authors evenly across affiliations), and n is the total number of  
authors of the article (excluding consortium authors). To examine temporal  
trends in country representation, the 473 articles (an additional eleven articles  
with uncertain author affiliations or consortium-only authors were omitted)  
were divided into seven chronological groups of near-equal size, and for each  
country, weights were summed across articles to obtain a total ‘author weight’  
in each date class. Darker colours represent more recent time periods.

Analysis of GWA author weights reveals that the number of countries 
represented and the representation of non-European countries, such as 
China, South Korea and Taiwan, has been increasing. Part c shows a plot of 
the first two principal components (PC1 and PC2) of a matrix of country 
representation vectors (n

1
/n, n

2
/n, n

3
/n, and so on), with one point for each 

of the 473 articles represented in part b. The vectors shown for the  
six countries with the highest author weights represent the loadings of these 
countries for PC1 and PC2, describing the contributions of these countries 
to the first two principal components. The principal components analysis 
plot identifies three main categories of articles — those with many UK 
authors, those with many US authors, and those with many authors 
elsewhere. Many of the most recent articles, represented by the darkest 
points, lie near the upper corner (‘elsewhere’) or along the upper edge 
(collaborations between authors ‘elsewhere’ and US authors).
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Principal component
A composite variable that 
summarizes the variation 
across a larger number of 
variables, each represented  
by a column of a matrix.

Loading
In a principal components 
analysis, a quantity that 
represents the contribution  
of one of the original  
variables (columns of the  
data matrix) to one of  
the principal components.

SNP
A nucleotide site at which two 
or more variants exist in a 
population. Most SNPs in 
genome-wide association 
studies are biallelic.

Tag SNP
A SNP chosen from a larger set 
of available SNPs for use in an 
association study. Tag SNPs 
are generally selected on the 
basis of favourable linkage 
disequilibrium properties.

Linkage disequilibrium
A statistical association in  
the occurrence of alleles  
at separate loci.

Tag-SNP portability
The utility of SNPs chosen as 
tags in one population for use 
as tags in another population.

populations. The focus on fewer populations aided the 
development of standard SNP panels, which were assem-
bled based on their variability in those populations. It 
facilitated the use of shared controls in large studies of 
multiple phenotypes, reducing the effort required for 
sample collection and genotyping. Finally, it led to the 
collection by separate investigators of commensura-
ble samples, enabling large meta-analyses with closely 
related populations.

Given these advantages of focusing on specific popu-
lations, populations of European descent were a natural 
choice for early GWA studies. Several European popula-
tions with a strong history of human-genetic research — 
such as the populations of Finland, Iceland and Sardinia 
— are large enough to make it possible to conduct stud-
ies with large samples in the setting of a comparatively 
homogeneous population. In addition, extensive col-
laborations and long-term genetic studies had already 
been established involving investigators from European 
countries and from non-European countries with large 
populations of European descent, such as Australia, 
Canada and the united States.

Population-genetic factors. Beyond the practical con-
siderations that contributed to a focus on populations 
of European ancestry, specific population-genetic 
properties of the European population have facilitated 
the successes of GWA studies in groups of European 
origin. Allele-frequency variation across populations 
— a source of false-positive findings in association  
studies19–21 — is less pronounced in Europe than in other 
geographic regions22–27. Although large population-
genetic studies have detected subtle geographic gradients 
in allele frequencies across the European continent28–30, 
as well as within individual countries31,32, well-designed 
GWA studies in Europeans have generally controlled 
for the effects of underlying allele-frequency variation, 
and generally the identification of false positives due to 
population structure has not been a problem.

The comparatively low level of population structure 
has further contributed to GWA successes in Europeans 
through the utility of the Hapmap CEu panel — the 
‘Centre d’Étude du Polymorphisme Humain (CEPH) 
European’ collection of 30 European-American fami-
lies genotyped at high density by the International 
Hapmap Project33,34. Early GWA studies used a tag-SNP 
approach33,35,36, in which each SNP in a genome-wide 
subset of SNPs was tested for disease association. It was 
hoped that each true disease SNP not genotyped in a 
study would be ‘captured’ through a minimal level of 
statistical association, or linkage disequilibrium (lD)37–39, 
with an informative nearby tag SNP included among 
the genotyped SNPs. The existence of a true disease 
SNP in an association study would then be detectable 
through separate associations of the disease SNP and the  
phenotype with the tag SNP.

In most cases, tag SNPs chosen with the Hapmap 
CEu panel were indeed ‘portable’ to studies of common 
variants in other Europeans36,40. Important determinants 
of tag-SNP portability to a target population are the simi-
larity of the target population to the reference panel 

from which the tag SNPs were selected, and lD levels 
in the target population41. lD in Europeans is moderate 
compared with other populations42,43, so Europeans are 
not disadvantaged in the tag-SNP approach by this vari-
able. Furthermore, portability is enhanced in Europeans 
owing to the low level of population structure and the 
resulting high level of genetic similarity between most 
European populations and the CEu sample41.

The combination of the various population-genetic 
factors with the pragmatic factors affecting the choice of  
study populations has uniquely favoured European popu-
lations in GWA studies. These factors provide part of  
the explanation for two outcomes: European GWA stud-
ies have produced many successes that can be replicated 
in different sets of individuals from the same European 
population as that in which the association was originally 
detected; and associations in one population of European 
descent are often replicable in other European popula-
tions, sometimes in groups that are quite geographically 
distant within the European continent.

The case for more populations
The advantages of European populations in GWA 
studies suggest that Europeans might productively 
be used for finding risk variants in non-Europeans. 
However, European populations contain only a subset of  
human genetic variation. Populations vary in terms 
of allele frequencies, biological adaptations and other 
properties that affect the detectability and importance 
of risk variants. Several observations suggest that no 
single population is sufficient for fully uncovering the  
variants underlying disease in all populations.

First, risk variants can differ in their occurrence 
across populations. A high-risk variant might only occur 
in certain populations, as has recently been seen for a car-
diomyopathy risk variant at myosin binding protein C,  
cardiac (MYBPC3) that has a frequency of ~4% in 
populations of the Indian subcontinent but is rare or 
absent elsewhere44. Such variants differ substantially  
in their relevance to different groups.

Second, even if the same variant is present in diverse 
populations, allele frequencies might differ45,46, as has 
been seen at transcription factor 7-like 2 (TCF7L2) 
and potassium voltage-gated channel, KQT-like sub-
family, member 1 (KCNQ1) in type 2 diabetes (BOX 2). 
The particular histories of recombination, mutation 
and divergence of genealogical lineages in the various 
populations can influence the ease with which a vari-
ant can be mapped, so a variant might be more easily 
detectable in some populations than in others47,48 (FIG. 1). 
Populations with lower lD (in which correlations 
between genotypes extend over shorter distances along 
a chromosome) might be more suitable for finely local-
izing a risk variant once its genomic region has been 
identified; this is because the genomic distance between 
disease-associated markers and true risk variants is 
likely to be smaller in such populations49. localization 
methods can potentially capitalize on lD differences 
across populations by identifying variants for which 
a causal relationship with disease underlies divergent  
patterns of association signals in a genomic region50.
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Minor allele frequency
The frequency of the less 
frequent allele at a biallelic 
genetic locus.

Expected heterozygosity
The probability for a locus that 
two alleles drawn from its 
allele-frequency distribution 
are distinct.

Ascertainment bias
A distortion in results due  
to the use of a subsample  
that, in a systematic manner, 
fails to properly represent  
a larger sample.

Third, diseases can have differences in prevalence 
across populations. Although a large portion of this 
variation undoubtedly results from non-genetic fac-
tors, disease prevalence affects both the practicality 
of obtaining the large sample sizes required by GWA 
studies for detecting variants with small effects and 
the relevance to a population of the findings. A limited 
population focus risks underemphasizing diseases for 
which prevalence is high in non-European popula-
tions, or reducing the power of a study compared with 
one that uses a larger sample from higher-prevalence 
populations.

Fourth, risk variants can have different effect sizes 
in different populations, so that variation across popu-
lations can exist in the underlying determinants of the 
same disease51. The existence of these risk differences, 
such as for the apolipoprotein E (APOE) ε4 allele in 
Alzheimer’s disease52, implies that the risk variants that 
are most relevant in a population might be most easily 
detected by using samples from the population itself, 
rather than by using samples from other populations.

The case for using diverse populations in GWA 
studies has recently been strengthened by the obser-
vation that the proportion of phenotypic variation 
explained by variants discovered through GWA is typi-
cally small53. GWA studies have focused on common 
variants — alleles that were typically present in ances-
tral African populations and that spread worldwide 
with ancient human migrations. Rare variants, which 
have not been examined to the same extent, provide 

one possible genetic source for unexplained phenotypic 
variation54–56. They might even be responsible for some 
association signals that are currently attributed to com-
mon variants47,57. Because rare variants are usually more 
recent in origin (as they have not had enough time to 
increase in frequency and become common), they are 
more likely to be geographically localized. Separate 
populations are therefore more likely to differ in their 
collection of rare alleles than in their collection of  
common alleles (FIG. 2).

These various reasons — differences in disease-allele 
frequency and lD patterns, phenotypic prevalence dif-
ferences, differences in effect size and differences in 
rare variants — provide the scientific motivation for 
GWA studies in diverse populations. Some variants 
that act in all populations might be more easily iden-
tifiable in certain groups owing to the properties of lD 
and allele frequency in those groups. For some pheno-
types with low prevalence in Europeans, studies might 
be more practical in other groups49. In addition, the 
use of multiple populations is the only way to uncover 
true biological variation in underlying risk variants, 
including biological variation resulting from differ-
ences across populations in the occurrence of rare  
risk alleles.

Challenges in non-Europeans
The properties of marker ascertainment, tag-SNP port-
ability and population structure that have been favour-
able to association mapping in Europeans instead 
pose challenges for studies in many non-European 
populations.

Marker ascertainment. Several investigations have 
found that the SNPs typically used in GWA studies 
are in various ways non-random58,59. They can have 
comparatively higher minor allele frequency (mAF) in 
Europeans and therefore higher expected heterozygosity 
than might be predicted on the basis of what is known 
about other types of markers that have less ascertainment  
bias (FIG. 3). These observations, which are likely to 
result from a focus on populations of European ances-
try in the initial detection of SNPs, in turn affect the 
relative proportion of the genome suited to mapping in 
different populations. Because of ascertainment effects 
in the development of marker panels, the fraction of the 
genome that lies within a specified physical distance of 
at least one variable marker in a standard panel varies  
across populations. Additionally, the lD statistic r 2 
(which measures whether a locus is ‘covered’ by a panel, 
typically on the basis of its maximal lD with some 
marker from the panel60) depends on marker-allele  
frequencies61,62; intermediate-mAF markers have 
greater potential to produce high r2 values than markers 
at a range of other minor allele frequencies63. Therefore, 
ascertainment bias that produces many low-mAF 
markers in a population can lead to decreased poten-
tial to detect phenotypically important alleles across 
the full range of possible allele frequencies, ultimately 
reducing the genome-wide utility in the population of 
standard marker panels.

 Box 2 | Common variants for type 2 diabetes

Over the past 3 years, large-scale genetic association studies have uncovered  
an impressive array of common variants that confer risk for type 2 diabetes (T2D)  
in populations of European origin131 and now also in East Asian populations13,14. 
Genome-wide association (GWA) studies of T2D provide a microcosm of the variety 
of issues that arise when considering association results across populations.

In a study in Icelanders, Grant et al.132 identified common alleles in transcription 
factor 7-like 2 (TCF7L2) as being associated with T2D, a finding that has been 
confirmed in many populations, including other Europeans133,134, West Africans135, 
East Asians136, South Asians137 and Mexican-Americans138. These TCF7L2 SNP 
alleles seem to have the strongest effect on T2D risk among common variants in 
Europeans. By analysing data in Europeans and West Africans, Helgason et al.135 

narrowed the likely TCF7L2 candidate region using differences in association 
strength with several TCF7L2-region SNPs in these populations. Subsequent 
analysis of T2D association in East Asians suggests that whereas genetic effect 
sizes for these TCF7L2 variants are similar in East Asians, risk allele frequencies  
are substantially lower, so much larger samples are needed to identify  
the association139.

The first T2D GWA studies in East Asians identified T2D risk variants in potassium 
voltage-gated channel, KQT-like subfamily, member 1 (KCNQ1)13,14. A recent 
meta-analysis in Europeans carried out by the DIAGRAM Consortium detected  
this same signal with a similar effect size, but at a level not even approaching 
genome-wide significance due to a much lower risk allele frequency (DIAGRAM 
Consortium, personal communication). Interestingly, this same meta-analysis 
identified a second genome-wide significant T2D association signal ~150 kb from 
those discovered in East Asians.

These examples show the value of carrying out large-scale genetic association 
studies in multiple populations to elucidate similarities and differences in  
genetic architecture and to help narrow candidate regions for identified  
disease-predisposing variants.
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Tag-SNP portability. Ascertainment issues might 
have contributed to the decreased level of tag-SNP 
portability seen in some non-European populations 
compared with predictions based on the lD levels of 
these populations41. Although tag SNPs chosen from 
the Hapmap are generally portable to most non- 
European populations36,40, portability is reduced in 
low-lD populations and intermediate-lD indigenous 
populations that are genetically distant from Hapmap 
reference panels41. Tag-SNP portability can potentially be 
improved in populations that are genetically intermedi-
ate between the primary Hapmap populations by using 
a mixture strategy to select SNPs for genotyping panels. 
In this approach, tag SNPs are selected to be informa-
tive for a mixture of haplotypes drawn from multiple 
Hapmap groups rather than from a single group64,65. 
However, this mixture strategy does not solve the prob-
lem of low portability in sub-Saharan African popula-
tions, in which lD levels are considerably lower than in  
other populations43,49,66.

Genotype imputation. Recently, tag-SNP analyses have 
been augmented by a genotype-imputation approach, 
in which data analysis is not restricted to SNPs that 
have been experimentally genotyped. In imputation-
based GWA studies7,8,67, densely genotyped reference 
individuals, typically from the Hapmap Project, pro-
vide information for predicting the genotypes at SNP 
positions measured in the reference data but not in the 
study sample. These predicted genotypes are then tested 
for disease association. Imputation is possible because 
two haplotypes that are identical for a set of nearby 
markers are likely to share the intervening chromo-
somal stretch identically by descent. Therefore, if one of 
the two haplotypes is genotyped more densely than the 

other, genotypes at unmeasured positions in the more 
sparsely genotyped haplotype can be predicted by copy-
ing the genotypes from the more densely genotyped 
haplotype. Genome-wide imputation of study haplo-
types proceeds by locally copying the most appropriate  
reference haplotypes in a probabilistic manner.

In imputation studies, the reduced portability of 
tag SNPs to African populations and to populations 
that, compared with reference groups, are genetically 
intermediate has resulted in reduced imputation accu-
racy for these populations68 and, consequently, reduced 
statistical power for imputation-based association  
mapping69. The accuracy of imputation depends largely 
on the same two factors that influence tag-SNP port-
ability. First, the overall level of lD in a study popu-
lation reflects the distance over which the genotypic 
correlations that permit imputation extend, so impu-
tation is more accurate in high-lD populations68. 
Second, imputation accuracy is influenced by the level 
of genetic relationship of the study population to the 
reference population8,68, which affects the utility of  
the haplotypes copied from the reference population 
when imputing genotypes in the study population. In 
an assessment of imputation accuracy in 29 populations 
worldwide, imputation accuracy based on Hapmap 
reference panels was highest in European populations 
closely related to the Hapmap CEu panel and low-
est in African populations and populations that were 
genetically intermediate between the panels68 (FIG. 4). 
As described above for the portability of tag SNPs, the 
use of mixture panels as reference data in imputation 
algorithms can improve imputation accuracy for GWA 
studies in genetically intermediate populations, but 
imputation in low-lD African populations continues 
to be a particular challenge49.

Figure 1 | Differences in ‘mappability’ of a risk variant between two populations with different linkage 
disequilibrium patterns. A disease mutation (orange rectangle) occurs on an ancestral chromosome that contains 
several marker alleles (green, pink, blue and yellow). Over time, recombination events (diamonds) break down the 
correlations between the disease mutation and the marker alleles. However, the recombination history differs for 
populations 1 and 2, separated by a barrier to gene flow (brown vertical line). Consequently, if the pink or blue allele 
were examined in population 1, a disease association might be found, but it might not be found in population 2.  
A similar situation applies for the yellow allele, with the roles of the populations reversed. Figure is modified, with 
permission, from REF. 121  (2009) John Wiley and Sons.

R E V I E W S

360 | mAy 2010 | VOlumE 11  www.nature.com/reviews/genetics

© 20  Macmillan Publishers Limited. All rights reserved10



Nature Reviews | Genetics

Pr
ob

ab
ili

ty
 o

f n
on

-z
er

o 
fr

eq
ue

nc
y

Minor allele frequency (Europe)
0.3 0.50.1 0.2 0.40

1

0.9

0.8

0.7

0.6

0.5

Africa

Middle East
Central/South Asia
East Asia

Oceania
Americas
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A population formed recently 
from the mixing of two or more 
groups whose ancestors had 
long been separated.

Admixed populations
In the effort to improve the potential of GWA studies for 
diverse human populations, African populations are not 
the only populations that pose substantial challenges. As 
described in the previous section, tag-SNP and impu-
tation studies have found that indigenous populations 
that are genetically intermediate between reference 
groups are among those that require special considera-
tion. In these cases, the challenges result largely from 
the way in which genomic resources have been devel-
oped rather than from intrinsic population properties. 
However, a second form of intermediate population  
exists in which the challenges are in fact intrinsic.

In admixed populations, individual genomes can be 
viewed as mosaics of ancestry segments, with different 
segments arising from different ‘parental’ populations 
that participated in an admixture process. Admixed 
populations often have high variation across individu-
als in the proportions of ancestry from the various 
source groups70–72, and in the same way that the use of 
multiple subgroups of a larger population in an associa-
tion study can give rise to false-positive associations, 
variation in admixture proportions can produce spuri-
ous associations of genotypes and phenotypes through 
their separate associations with ancestry73.

Heterogeneity of admixture has posed a barrier to 
association mapping in admixed populations. These 
populations have instead been considered with other 
designs, such as admixture mapping, in which genomic 
segments with excess ancestry from a high-prevalence 
parental population are identified as potential locations 
for risk variants74–77. The utility of admixture mapping, 

which has had some success in mapping loci for traits 
with strong differences in phenotypic distribution 
among parental populations78–81, has relied on its rela-
tive efficiency compared with GWA. Whereas GWA 
has typically used tens to hundreds of thousands of 
markers (or more), admixture mapping requires only 
a few thousand markers for estimating the ancestry of 
genomic segments82–85. However, GWA designs have 
improved, and the efficiency of GWA now exceeds 
that of admixture mapping over a broad range of pos-
sible values for model parameters86. Future analyses 
in admixed populations might rely on a combination 
of GWA and admixture-mapping principles that con-
siders unusual local ancestry estimates jointly with 
association signals. In addition, because admixture 
mapping requires fewer markers, it might continue to 
be valuable in genomic regions that are poorly covered 
by typical GWA marker sets.

In the imputation context, it has been largely 
unclear whether genotypes in an admixed population 
can be most accurately imputed using a mixture of ref-
erence panels from the parental populations or using 
a comparable reference panel from the admixed popu-
lation itself. Numerous techniques are now available 
for inferring ancestry blocks along the genome under 
study87–91, and one recent approach uses imputation 
accuracy as a basis for evaluating inference of ancestry 
blocks92. These developments now offer the possibil-
ity of improving imputation in admixed populations 
by integrating the inference of admixture and missing 
genotypes93, either by locally imputing from parental 
reference panels along the genome (FIG. 5) or by con-
currently imputing genotypes and inferring ancestry. 
Although evaluations in admixed populations of the 
performance of different imputation approaches have 
not yet used local ancestry94, it is likely that the intrin-
sic challenges of working with admixed populations in 
GWA studies can be surmounted or at least reduced.

Population-genetic modelling
We have seen that information on the population-
genetic properties of individual populations and sets 
of populations is useful for understanding the features 
and limitations of GWA studies in diverse populations. 
Population-genetic data and modelling have had impor-
tant roles in the planning of GWA studies from the 
early stages3,95, and modelling efforts can now help to 
address concerns about the similarities and differences  
among GWA results in separate populations.

Population-genetic models begin from the per-
spective that the factors that affect the genealogical 
descent of a disease mutation — such as migrations, 
changes in population size, natural selection and the 
local recombination landscape — ultimately affect  
the distribution of the mutation across individuals 
in the present. Because the full genetic history of the 
human population is unknown, population-genetic 
models based on relatively few parameters can be used 
instead to simulate plausible histories, to examine the 
properties of risk variants simulated under the models 
and to evaluate strategies for detecting these variants. 

Figure 2 | effect of frequency in europe on the occurrence of an allele in other 
regions. The figure illustrates that alleles that are more common in one group, in this 
case Europeans, are more likely to be present in other groups. It also shows that 
populations that are geographically closer to Europe, such as populations of the Middle 
East, tend to have more alleles shared with Europeans than more geographically distant 
populations, such as those of Oceania. The figure is based on SNP data from 
supplementary figure twenty-one of REF. 43, which used 512,762 autosomal SNPs in 
indigenous populations from the Human Genome Diversity Cell Line Panel140, and  
which standardized sample sizes across groups by evaluating allele frequencies in 
samples of size 40.
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interest. For each variable, a 
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many of these models use the coalescent framework96,97, 
which provides a flexible, computationally efficient and 
theoretically grounded approach that can simulate one 
or more populations retrospectively, back in time from 
the present.

New population-genetic simulation tools that account 
for shared descent among individuals, through both the 
coalescent and through forward-time approaches98–101, 
now provide an improved basis for GWA model-
ling. Simulation programs have incorporated newly 
appreciated phenomena, such as recombination hot 
spots102, as well as approximations and computational 
advances that improve the potential for simulating 
large genomic regions103–106. Human population- 
genetic data have been recently used to calibrate evo-
lutionary models107–112, and further advances in human 
population genetics offer the potential to make these 
models increasingly detailed and therefore increasingly 
relevant for GWA applications.

Independence approximations. A primary use of a 
population-genetic perspective in the GWA context 
has been in predicting expected patterns of disease 
variation113–115. However, GWA statistical analysis tools 
have not yet fully taken advantage of this perspective. 
From a population-genetic standpoint, all individuals 
have some degree of relationship through their shared 
descent in the complete human pedigree. However, in 
standard GWA analyses, in which alleles that are more 
common in cases than in controls are identified by 
testing contingency tables locally along the genome, an 
implicit assumption is that the genotypes of separate 

individuals can be treated as independent random vari-
ates. Approximating separate individuals as independ-
ent has been productive as a first approximation, but 
more information is potentially available by accounting 
for correlation among individuals resulting from shared 
descent. Fine-mapping association methods designed 
for localization of risk variants seek to consider this 
shared descent116–120; these methods have been informa-
tive on a small scale, but a current challenge is to extend 
them to large data sets.

Similar independence approximations are made in 
GWA replication analyses, which check for close rela-
tionships among sampled individuals but otherwise 
treat separate studies of non-overlapping samples as 
independent. A genealogical perspective suggests that 
replication studies are in fact ‘pseudoreplication’ stud-
ies, as potential correlations could arise from shared 
genealogy. From this viewpoint, particularly in small 
populations, separate association studies that identify 
the same risk variant in a population might not pro-
vide the same degree of confirmation as replication 
studies that are conducted in a context in which events 
are truly independent121. As in the analysis of indi-
vidual GWA studies, the independence assumption 
has provided a sensible initial strategy for replication 
studies, but unlike the case of genealogical dependence 
within studies, approaches that account for depend-
ence among studies have not yet been considered. The 
magnitude in real populations of the pseudoreplication  
effect — the degree to which separate association 
studies provide the same outcome as a result of shared 
ancestry of study participants — is unknown, so it 
remains uncertain how likely a replication study is 
to detect a risk variant under the hypothesis that the 
variant has the same disease effect in all populations. 
The probability of pseudoreplicating a false positive 
across populations is also unknown. Although efforts 
have been devoted to statistical issues of replication in 
relation to sample size and measured effect-size122,123, 
studies of the population genetics of replication are in 
their infancy. As the frequency of replication studies 
continues to increase, methods for evaluating intrinsic 
correlations between study outcomes and their effects 
on interpretations of replication studies would provide 
a useful development.

Prospects
GWA studies have dramatically increased the number 
of variants known for numerous complex diseases. 
They have been remarkably successful for identifying 
targets of exploration, often suggesting unforeseen 
directions for research on disease mechanisms, and 
they have been especially informative for scientists 
working on diseases for which few if any genetic vari-
ants were previously known. At the same time, they 
have shown that complex genetic diseases are incon-
testably complex, caused by many variants that have 
mostly small effects and that are unsuited to immedi-
ate risk prediction and clinical use. These results have 
understandably triggered a series of reflections on 
the magnitude of the contributions of GWA studies 

Figure 3 | excess snP variability in europeans resulting from ascertainment 
bias. The y axis depicts mean heterozygosity across loci in 443 individuals from  
29 populations on the basis of 512,762 autosomal SNPs from an Illumina genotyping 
panel43. The x axis depicts mean heterozygosity in the same individuals on the basis 
of 783 autosomal microsatellite markers141,142. Because individual microsatellites, 
unlike SNPs, are highly variable, microsatellite ascertainment is less dependent on 
the initial ascertainment sample than is SNP ascertainment143. Therefore, the 
imperfect correlation of SNP heterozygosity with microsatellite heterozygosity 
might reflect ascertainment bias in the SNP set. The idea for this figure is based  
on a similar figure in REF. 41.
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in general4,124–127. GWA is a relatively new approach, 
and its full contribution will only become clear as the 
biological properties of the variants it uncovers are 
further investigated. As the GWA field diversifies its 
emphasis, attention will shift not only to diverse popu-
lations but also to structural variation, interaction 
effects, rare sequence variation and molecular assays 
of identified variants.

We and others128,129 have argued that the use of 
diverse populations will be an essential component  
of the next phase of GWA work, and we have discussed 
the benefits that arise from the consideration of GWA 
studies in diverse populations. As knowledge gained 
from GWA becomes relevant to medicine, a concern 
is that health disparities will emerge owing to the 
bias towards European populations in GWA studies,  
but using diverse populations in GWA studies can 
reduce differences in the understanding of underly-
ing genetic variation across populations. many GWA 
studies in diverse populations are now ongoing or are 
imminent. To achieve their maximal potential, these 

studies will profit from deeper investigation of such 
issues as imputation, admixture and replication, as we 
have described.

The current GWA strategy of using preselected 
markers to search for risk variants that are common 
in human populations is giving way to a paradigm of 
using whole-genome sequence approaches that can 
search for rare disease-risk variants as well. Future 
GWA studies — and some studies now in progress — 
will incorporate partial or complete genome sequences 
for some or all of the study participants. For many 
of the same reasons that GWA studies to date have 
emphasized populations of European descent, early 
sequence studies might also have a European focus. As 
we have seen, however, rare risk variants are likely to 
be more geographically restricted than the common 
variants that are currently of interest. Consequently, it 
will be even more important for multiple populations 
to be considered in sequence-based GWA studies that 
are aimed at detecting rare variants than in current  
studies of common variants.

Figure 4 | Genotype imputation accuracy in 29 populations, with and without external reference panels. 
Imputation accuracy is plotted as a function of linkage disequilibrium (LD) measured by mean r2 at a distance of 
10 kb in a genome-wide data set43. Genotypes in a genome-wide study are hidden and then imputed with two 
different designs. In the grey shaded region, genotypes in each population are imputed without an external 
reference panel, so the information for imputing ‘missing’ genotypes comes from other individuals in the 
population. In the yellow shaded region, genotypes in the population are imputed using a large external reference 
panel, chosen optimally among 36 mixtures of the HapMap CEU (European-American), CHB+JPT (Chinese and 
Japanese) and YRI (Yoruba) panels. Colour coding for populations follows that of FIG. 3 (Africa, orange; Middle East, 
yellow; Europe, blue; Central/South Asia, red; East Asia, pink; Oceania, green; Americas, purple). The regression 
lines exclude the African populations, and they have coefficients of determination 0.003 (external reference) and  
0.953 (internal reference). The figure shows that imputation accuracy based on an internal reference is highly 
correlated with LD. However, imputation accuracy based on an external reference is not correlated with LD  
(and instead depends largely on the composition of the particular reference panels available). The figure is based 
on data in scenarios one, three and six in table three of REF. 68.
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The 1000 Genomes Project, a large-scale commu-
nity effort aimed at producing genome sequence data 
on ~2,000 diverse individuals, will facilitate sequence-
based GWA studies in diverse populations, serving as a 
public resource for sequence-based GWA studies in the 
same way that the Hapmap Project provided data for 
tag-SNP GWA studies. With sequencing, concerns about 
population biases in marker ascertainment are likely to 
subside. Furthermore, the larger number of individuals 
in the 1000 Genomes Project compared with the ini-
tial 270 individuals in the Hapmap Project permits the 
examination of a wider diversity of samples. Therefore, 
the forthcoming genomic resources already under devel-
opment are expected to improve the conditions for the 
examination of diverse populations in GWA studies.

At the same time, it must be remembered that the 
worldwide human population and its distribution of 
disease-risk variation represent the singular outcome  
of an evolutionary experiment, and large portions of 
this experiment continue to remain untapped for their 
potential to contribute to the modern enterprise of 
human genetics. Each new genetic resource expands the 
consideration of human diversity but necessarily provides 
an incomplete picture of its full extent. Therefore, many 
opportunities exist for identifying new aspects of genetic 
variation to examine for future resources, as well as for the 
creative application of worldwide populations in the dis-
covery of risk variants, in the characterization of known 
variants and in the facilitation of these efforts through 
population-genetic modelling and statistical designs. As 
technological barriers to the production of genomic data 
continue to fall, it can be hoped that the community will 
accept the challenge of capitalizing on the full range of  
human diversity for the next wave of investigations  
of the variants that underlie human genetic disease.

Figure 5 | imputation in admixed populations. 
Admixture segments are estimated in each individual 
sampled from a genome-wide association study. Consider 
reference haplotypes from two separate panels (pink and 
blue boxes). Separately for each admixture segment of a 
haplotype, alleles are imputed using reference haplotypes 
from the same population as the inferred source. Within a 
source population, a haplotype might have alleles imputed 
from multiple reference haplotypes; this is depicted on the 
left, where both haplotypes from the same (blue) source 
population serve as imputation templates. If admixture 
estimates for a segment are uncertain, conditional 
imputations can be used; given each of the possible source 
populations for the segment, the conditional imputation 
can be weighted by the probability of the source.
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93. Paşaniuc, B. et al. Inference of locus-specific ancestry 
in closely related populations. Bioinformatics 25, 
i213–i221 (2009).

94. Shriner, D. et al. Practical considerations for 
imputation of untyped markers in admixed 
populations. Genet. Epidemiol. 34, 258–265 (2010).

95. Kruglyak, L. The road to genome-wide association 
studies. Nature Rev. Genet. 9, 314–318 (2008).

96. Hein, J. et al. Gene Genealogies, Variation and 
Evolution (Oxford Univ. Press, 2005).

97. Wakeley, J. Coalescent Theory (Roberts & Company, 
2008).

98. Peng, B. et al. Forward-time simulations of human 
populations with complex diseases. PLoS Genet. 3, 
407–420 (2007).

99. Chadeau-Hyam, M. et al. Fregene: simulation of realistic 
sequence-level data in populations and ascertained 
samples. BMC Bioinformatics 9, 364 (2008).

100. Hernandez, R. D. A flexible forward simulator for 
populations subject to selection and demography. 
Bioinformatics 24, 2786–2787 (2008).

101. Padhukasahasram, B. et al. Exploring population 
genetic models with recombination using efficient 
forward-time simulations. Genetics 178, 2417–2427 
(2008).

102. Hellenthal, G. & Stephens, M. msHOT: modifying 
Hudson’s ms simulator to incorporate crossover  
and gene conversion hotspots. Bioinformatics 23, 
520–521 (2007).

103. McVean, G. A. T. & Cardin, N. J. Approximating the 
coalescent with recombination. Phil. Trans. R. Soc. 
Lond. B 360, 1387–1393 (2005).

104. Marjoram, P. & Wall, J. D. Fast ‘coalescent’ simulation. 
BMC Genet. 7, 16 (2006).

105. Liang, L. et al. GENOME: a rapid coalescent-based 
whole genome simulator. Bioinformatics 23,  
1565–1567 (2007).

106. Chen, G. K. et al. Fast and flexible simulation of DNA 
sequence data. Genome Res. 19, 136–142 (2009).

107. Marth, G. T. et al. The allele frequency spectrum in 
genome-wide human variation data reveals signals of 
differential demographic history in three large world 
populations. Genetics 166, 351–372 (2004).

108. Schaffner, S. F. et al. Calibrating a coalescent 
simulation of human genome sequence variation. 
Genome Res. 15, 1576–1583 (2005).

109. Voight, B. F. et al. Interrogating multiple aspects of 
variation in a full resequencing data set to infer human 
population size changes. Proc. Natl Acad. Sci. USA 
102, 18508–18513 (2005).

110. Plagnol, V. & Wall, J. D. Possible ancestral structure in 
human populations. PLoS Genet. 2, 972–979 (2006).

111. Fagundes, N. J. R. et al. Statistical evaluation of 
alternative models of human evolution. Proc. Natl 
Acad. Sci. USA 104, 17614–17619 (2007).

112. DeGiorgio, M. et al. Explaining worldwide patterns 
of human genetic variation using a coalescent-based 
serial founder model of migration outward  
from Africa. Proc. Natl Acad. Sci. USA 106,  
16057–16062 (2009).

113. Pritchard, J. K. Are rare variants responsible for 
susceptibility to complex diseases? Am. J. Hum. 
Genet. 69, 124–137 (2001).

114. Reich, D. E. & Lander, E. S. On the allelic spectrum of 
human disease. Trends Genet. 17, 502–510 (2001).

R E V I E W S

NATuRE REVIEWS | Genetics  VOlumE 11 | mAy 2010 | 365

© 20  Macmillan Publishers Limited. All rights reserved10



115. Di Rienzo, A. Population genetics models of common 
diseases. Curr. Op. Genet. Dev. 16, 630–636 (2006).

116. Liu, J. S. et al. Bayesian analysis of haplotypes for 
linkage disequilibrium mapping. Genome Res. 11, 
1716–1724 (2001).

117. Morris, A. P. et al. Fine-scale mapping of disease loci 
via shattered coalescent modeling of genealogies.  
Am. J. Hum. Genet. 70, 686–707 (2002).

118. Zöllner, S. & Pritchard, J. K. Coalescent-based 
association mapping and fine mapping of complex 
trait loci. Genetics 169, 1071–1092 (2005).

119. Minichiello, M. J. & Durbin, R. Mapping trait loci  
by use of inferred ancestral recombination graphs.  
Am. J. Hum. Genet. 79, 910–922 (2006).

120. Kimmel, G. et al. Association mapping and significance 
estimation via the coalescent. Am. J. Hum. Genet. 83, 
675–683 (2008).

121. Rosenberg, N. A. & VanLiere, J. M. Replication of 
genetic associations as pseudoreplication due to shared 
genealogy. Genet. Epidemiol. 33, 479–487 (2009).

122. Gorroochurn, P. et al. Non-replication of association 
studies: ‘pseudo-failures’ to replicate? Genet. Med. 9, 
325–331 (2007).

123. Zöllner, S. & Pritchard, J. K. Overcoming the winner’s 
curse: estimating penetrance parameters from case–
control data. Am. J. Hum. Genet. 80, 605–615 (2007).

124. Goldstein, D. B. Common genetic variation and human 
traits. N. Engl. J. Med. 360, 1696–1698 (2009).

125. Hirschhorn, J. N. Genomewide association studies — 
illuminating biologic pathways. N. Engl. J. Med. 360, 
1699–1701 (2009).

126. Kraft, P. & Hunter, D. J. Genetic risk prediction — are we 
there yet? N. Engl. J. Med. 360, 1701–1703 (2009).

127. Manolio, T. A. et al. Finding the missing heritability of 
complex diseases. Nature 461, 747–753 (2009).

128. Cooper, R. S. et al. Genome-wide association studies: 
implications for multiethnic samples. Hum. Mol. Genet. 
17, R151–R155 (2008).

129. Need, A. C. & Goldstein, D. B. Next generation 
disparities in human genomics: concerns and 
remedies. Trends Genet. 25, 489–494 (2009).

130. Hindorff, L. A., Junkins, H. A., Mehta, J. P. &  
Manolio, T. A. A catalog of published genome-wide 
association studies. National Human Genome 
Research Institute [online], http://www.genome.
gov/26525384 (accessed 25 Feb 2010).

131. Zeggini, E. et al. Meta-analysis of genome-wide 
association data and large-scale replication  
identifies additional susceptibility loci for  
type 2 diabetes. Nature Genet. 40, 638–645 
(2008).

132. Grant, S. F. et al. Variant of transcription  
factor 7-like 2 (TCF7L2) gene confers risk of  
type 2 diabetes. Nature Genet. 38, 320–323 
(2006).

133. Groves, C. J. et al. Association analysis of  
6,736 U.K. subjects provides replication and 
confirms TCF7L2 as a type 2 diabetes susceptibility 
gene with a substantial effect on individual risk. 
Diabetes 55, 2640–2644 (2006).

134. Scott, L. J. et al. Association of transcription  
factor 7-like 2 (TCF7L2) variants with type 2 
diabetes in a Finnish sample. Diabetes 55,  
2649–2653 (2006).

135. Helgason, A. et al. Refining the impact of TCF7L2  
gene variants on type 2 diabetes and adaptive 
evolution. Nature Genet. 39, 218–225 (2007).

136. Luo, Y. et al. Meta-analysis of the association 
between SNPs in TCF7L2 and type 2 diabetes  
in East Asian population. Diabetes Res. Clin. Pract. 
85, 139–146 (2009).

137. Chandak, G. R. et al. Common variants in the TCF7L2 
gene are strongly associated with type 2 diabetes 
mellitus in the Indian population. Diabetologia 50, 
63–67 (2007).

138. Lehman, D. M. et al. Haplotypes of transcription 
factor 7-like 2 (TCF7L2) gene and its upstream 
region are associated with type 2 diabetes and  
age of onset in Mexican Americans. Diabetes 56, 
389–393 (2007).

139. Tan, J. T. et al. Polymorphisms identified through 
genome-wide association studies and their 
associations with type 2 diabetes in Chinese, Malays, 
and Asian-Indians in Singapore. J. Clin. Endocrinol. 
Metab. 95, 390–397 (2010).

140. Cann, H. M. et al. A human genome diversity cell line 
panel. Science 296, 261–262 (2002).

141. Ramachandran, S. et al. Support from the 
relationship of genetic and geographic distance  
in human populations for a serial founder effect 
originating in Africa. Proc. Natl Acad. Sci. USA 102, 
15942–15947 (2005).

142. Rosenberg, N. A. et al. Clines, clusters, and the 
effect of study design on the inference of human 
population structure. PLoS Genet. 1, 660–671 
(2005).

143. Rogers, A. R. & Jorde, L. B. Ascertainment bias in 
estimates of average heterozygosity. Am. J. Hum. 
Genet. 58, 1033–1041 (1996).

Acknowledgements
We thank L. Hindorff for detailed information on the National 
Human Genome Research Institute (NHGRI) catalogue of 
GWA studies, the DIAGRAM Consortium for use of prepubli-
cation data, J. Li and S. Zöllner for helpful discussions, and  
N. Patterson and an anonymous reviewer for comments on a 
draft of the manuscript. We are grateful to M. DeGiorgio,  
M. Jakobsson, S. Reddy and P. Scheet for assistance with 
Box 1 and with figure preparation. Support was provided by 
US National Institutes of Health grants DK062370, 
GM081441, HG000376 and HL090564, and by grants from 
the Burroughs Wellcome Fund and the Alfred P. Sloan 
Foundation.

Competing interests statement
The authors declare no competing financial interests.

DATABASES
Entrez Gene: http://www.ncbi.nlm.nih.gov/gene
APOE | KCNQ1 | MYBPC3 | TCF7L2
OMIM: http://www.ncbi.nlm.nih.gov/omim
UniProtKB: http://www.uniprot.org

FURTHER INFORMATION
1000 Genomes Project: http://www.1000genomes.org
Human Genome Diversity Cell Line Panel:  
http://www.cephb.fr/en/hgdp/diversity.php
International HapMap Project:  
http://hapmap.ncbi.nlm.nih.gov
Nature Reviews Genetics article series on Genome-wide 
association studies: http://www.nature.com/nrg/series/
gwas/index.html
NHGRI list of GWA studies:  
http://www.genome.gov/26525384

All links Are Active in the online PDf

R E V I E W S

366 | mAy 2010 | VOlumE 11  www.nature.com/reviews/genetics

© 20  Macmillan Publishers Limited. All rights reserved10

http://www.genome.gov/26525384
http://www.genome.gov/26525384
http://www.ncbi.nlm.nih.gov/gene
http://www.ncbi.nlm.nih.gov/gene/348
http://www.ncbi.nlm.nih.gov/gene/3784
http://www.ncbi.nlm.nih.gov/gene/4607
http://www.ncbi.nlm.nih.gov/gene/6934
http://www.ncbi.nlm.nih.gov/omim
http://www.uniprot.org
http://www.1000genomes.org
http://www.cephb.fr/en/hgdp/diversity.php
http://hapmap.ncbi.nlm.nih.gov
http://www.nature.com/nrg/series/gwas/index.html
http://www.nature.com/nrg/series/gwas/index.html
http://www.genome.gov/26525384

	Successes in Europeans
	Abstract | Genome-wide association (GWA) studies have identified a large number of SNPs associated with disease phenotypes. As most GWA studies have been performed in populations of European descent, this Review examines the issues involved in extending the consideration of GWA studies to diverse worldwide populations. Although challenges exist with issues such as imputation, admixture and replication, investigation of a greater diversity of populations could make substantial contributions to the goal of mapping the genetic determinants of complex diseases for the human population as a whole.
	Box 1 | Populations in past genome-wide association studies
	The case for more populations
	Challenges in non-Europeans
	Box 2 | Common variants for type 2 diabetes
	Figure 1 | Differences in ‘mappability’ of a risk variant between two populations with different linkage disequilibrium patterns. A disease mutation (orange rectangle) occurs on an ancestral chromosome that contains several marker alleles (green, pink, blue and yellow). Over time, recombination events (diamonds) break down the correlations between the disease mutation and the marker alleles. However, the recombination history differs for populations 1 and 2, separated by a barrier to gene flow (brown vertical line). Consequently, if the pink or blue allele were examined in population 1, a disease association might be found, but it might not be found in population 2. A similar situation applies for the yellow allele, with the roles of the populations reversed. Figure is modified, with permission, from REF. 121  (2009) John Wiley and Sons.
	Admixed populations
	Population-genetic modelling
	Figure 2 | Effect of frequency in Europe on the occurrence of an allele in other regions. The figure illustrates that alleles that are more common in one group, in this case Europeans, are more likely to be present in other groups. It also shows that populations that are geographically closer to Europe, such as populations of the Middle East, tend to have more alleles shared with Europeans than more geographically distant populations, such as those of Oceania. The figure is based on SNP data from supplementary figure twenty-one of REF. 43, which used 512,762 autosomal SNPs in indigenous populations from the Human Genome Diversity Cell Line Panel140, and which standardized sample sizes across groups by evaluating allele frequencies in samples of size 40.
	Figure 3 | Excess SNP variability in Europeans resulting from ascertainment bias. The y axis depicts mean heterozygosity across loci in 443 individuals from 29 populations on the basis of 512,762 autosomal SNPs from an Illumina genotyping panel43. The x axis depicts mean heterozygosity in the same individuals on the basis of 783 autosomal microsatellite markers141,142. Because individual microsatellites, unlike SNPs, are highly variable, microsatellite ascertainment is less dependent on the initial ascertainment sample than is SNP ascertainment143. Therefore, the imperfect correlation of SNP heterozygosity with microsatellite heterozygosity might reflect ascertainment bias in the SNP set. The idea for this figure is based on a similar figure in REF. 41.
	Prospects
	Figure 4 | Genotype imputation accuracy in 29 populations, with and without external reference panels. Imputation accuracy is plotted as a function of linkage disequilibrium (LD) measured by mean r2 at a distance of 10 kb in a genome-wide data set43. Genotypes in a genome-wide study are hidden and then imputed with two different designs. In the grey shaded region, genotypes in each population are imputed without an external reference panel, so the information for imputing ‘missing’ genotypes comes from other individuals in the population. In the yellow shaded region, genotypes in the population are imputed using a large external reference panel, chosen optimally among 36 mixtures of the HapMap CEU (European-American), CHB+JPT (Chinese and Japanese) and YRI (Yoruba) panels. Colour coding for populations follows that of FIG. 3 (Africa, orange; Middle East, yellow; Europe, blue; Central/South Asia, red; East Asia, pink; Oceania, green; Americas, purple). The regression lines exclude the African populations, and they have coefficients of determination 0.003 (external reference) and 0.953 (internal reference). The figure shows that imputation accuracy based on an internal reference is highly correlated with LD. However, imputation accuracy based on an external reference is not correlated with LD (and instead depends largely on the composition of the particular reference panels available). The figure is based on data in scenarios one, three and six in table three of REF. 68.
	Figure 5 | Imputation in admixed populations. Admixture segments are estimated in each individual sampled from a genome-wide association study. Consider reference haplotypes from two separate panels (pink and blue boxes). Separately for each admixture segment of a haplotype, alleles are imputed using reference haplotypes from the same population as the inferred source. Within a source population, a haplotype might have alleles imputed from multiple reference haplotypes; this is depicted on the left, where both haplotypes from the same (blue) source population serve as imputation templates. If admixture estimates for a segment are uncertain, conditional imputations can be used; given each of the possible source populations for the segment, the conditional imputation can be weighted by the probability of the source.



