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Abstract

In studying allele-frequency variation across populations, it is often convenient to classify an allelic type as “rare,” with nonzero frequency 
less than or equal to a specified threshold, “common,” with a frequency above the threshold, or entirely unobserved in a population. 
When sample sizes differ across populations, however, especially if the threshold separating “rare” and “common” corresponds to a 
small number of observed copies of an allelic type, discreteness effects can lead a sample from one population to possess substantially 
more rare allelic types than a sample from another population, even if the two populations have extremely similar underlying allele-fre
quency distributions across loci. We introduce a rarefaction-based sample-size correction for use in comparing rare and common vari
ation across multiple populations whose sample sizes potentially differ. We use our approach to examine rare and common variation in 
worldwide human populations, finding that the sample-size correction introduces subtle differences relative to analyses that use the full 
available sample sizes. We introduce several ways in which the rarefaction approach can be applied: we explore the dependence of allele 
classifications on subsample sizes, we permit more than two classes of allelic types of nonzero frequency, and we analyze rare and com
mon variation in sliding windows along the genome. The results can assist in clarifying similarities and differences in allele-frequency 
patterns across populations.
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Introduction
The study of data on genetic variation often begins with simple ques
tions. Which alleles are present? In which populations are they pre
sent, and where are they absent? Which alleles are common, and 
which are rare? Often, the first calculations that an analyst performs 
on a population-genetic dataset seek to answer such questions.

To take one example, a recent study of Witt et al. (2022) sought 
to characterize genetic variation in modern and archaic popula
tions, with a particular interest in the sharing of alleles among 
groups. In their Fig. 5, Witt et al. (2022) tabulated, for alleles clas
sified as archaic, the fractions of those alleles that appear in mod
ern Europeans, South Asians, and East Asians, in pairs among 
these three groups, and in all three groups.

In studies of the presence and absence of alleles in populations, 
differing sample sizes among the groups can influence the result
ing assessments. For example, an allele absent in a small sample 
might eventually be found in a larger sample, so that a population 
with a sample size that is small might appear to possess fewer al
leles than a population with one that is large. This problem is ad
dressed by the rarefaction method, borrowed for population 
genetics (e.g. Kalinowski 2004) from ecological work on species 

diversity (Hurlbert 1971; Gotelli and Colwell 2001). Using a com
binatorial formula, given sample size Nj for population j and a 
fixed value of g ≤ Nj, all possible subsamples of size g are consid
ered, and the expected number of distinct alleles across random 
samples of size g is calculated. Multiple populations of different 
sample size can be compared by examining subsamples of equal 
size g.

Kalinowski (2004) devised a rarefaction-based calculation of “pri
vate allelic richness,” a measure of the fraction of alleles that are pri
vate to a particular population—considering subsamples of size g 
from each of a series of populations. Generalizing this concept, 
Szpiech et al. (2008) introduced a calculation of the fraction of alleles 
that are private to a set of populations—that is, found in each of the 
populations—when subsamples of size g are taken in each popula
tion. Szpiech et al. (2008) examined geographic distributions of al
leles in samples from multiple populations, all standardized with 
the same subsample size g. Thus, for example, for Populations 1, 
2, and 3, with different sample sizes, the rarefaction-based calcula
tion enables a comparison of the fraction of alleles found only in 1, 
only in 2, only in 3, in 1 and 2 but not 3, in 1 and 3 but not 2, in 2 and 3 
but not 1, and in all three groups—assuming that all three groups 
have subsamples of equal size.
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Recently, Biddanda et al. (2020) introduced a new computation 
and visualization to compare the presence and absence of alleles 
across populations. Seeking to describe geographic distributions 
of alleles across multiple populations—as in Szpiech et al. (2008)
and Witt et al. (2022)—Biddanda et al. (2020) made an additional dis
tinction between alleles that are present and rare and those that are 
present and common. For each of several populations, they classified 
alleles into three categories: rare, common, and unobserved. For a 
population set, they tabulated fractions of alleles that possess par
ticular classes, illustrating the classifications in new visualizations.

In the same way that sample size can affect presence and ab
sence, sample size can also affect the classification of an allele as pre
sent and rare as opposed to present and common. Suppose a locus 
has the same allele frequencies in Populations 1 and 2, with sample 
sizes 39 and 40, respectively. Suppose a maximum of 5% is the largest 
allele frequency classified as rare. An allele A of frequency 5% that is 
regarded as rare in an infinite population will be regarded as rare in 
Population 1 when 1 copy is observed in the sample of size 39. The 
probability of observing exactly 1 copy is 

(
39
1

􏼁
(0.051)(0.9538) ≈ 0.278. 

The allele will be regarded as rare in Population 2 if 1 copy is 
observed or if 2 copies are observed. The associated probability is 
(

40
1

􏼁
(0.051)(0.9539) +

(
40
2

􏼁
(0.052)(0.9538) ≈ 0.548. Hence, as a result of 

different sample sizes, the two populations have the potential to 
differ dramatically in the number of their truly rare alleles (that is, 
rare at the population level) that are classified as rare in samples.

Here, we extend the geographic classification of alleles into cat
egories of rare, common, and unobserved, as in Biddanda et al. 
(2020), but accounting for differences in sample size, as in 
Szpiech et al. (2008). In particular, we extend the rarefaction ap
proach from Szpiech et al. (2008), which only considered presence 
and absence, to account for the three categories of Biddanda et al. 
(2020): unobserved, rare, and common. We examine whether the 
rarefaction correction to make use of equal sample sizes in the 
data of Biddanda et al. (2020) influences the interpretation of 
rare and common human variation. In the spirit of Biddanda 
et al. (2020), we also include a variety of visualizations for under
standing sample-size-corrected patterns in the geographic distri
butions of rare and common alleles.

Statistical methods
Consider a single locus in an individual. We henceforth use “allelic 
type” to refer to one of a set of possible variants at a locus and “al
lele” to refer to an observation at a given locus in a single individ
ual. Considering a locus with I ≥ 2 allelic types, we denote by Nij 

the number of copies of allelic type i observed in a sample from 
population j. By extension, Nj =

􏽐I
i=1 Nij is the sample size of popu

lation j at the locus. We consider J ≥ 2 populations.
Biddanda et al. (2020) declare “rare” allelic types as those with 

nonzero frequency less than or equal to 100z% in a population, 
where z is a specified numerical cutoff (they use z = 0.05). They 
then classify allelic types with frequency greater than 100z% as 
“common.” This classification gives rise to their three frequency 
categories of unobserved, rare, and common. Thus, considering 
all J populations, an allelic type takes on a “pattern” denoted by 
x = (x1, x2, . . . , xJ), where each xj has a value in {unobserved, 
rare, common}, herein shortened to {U, R, C}.

Three allelic classes: unobserved, rare, and 
common
For a sample with counts Nij for the I allelic types in the J popula
tions, we consider subsamples with specified sizes. Suppose that a 
sample of size g alleles is drawn in each of the J populations, for a 

total sample size of Jg. We calculate the probability that when we 
draw a sample of size Jg, an allelic type has pattern x.

The probability Uijg that allelic type i is unobserved in a sub
sample of size g from population j is

Uijg =
Nj−Nij

g

􏼐 􏼑

Nj
g

􏼐 􏼑 . (1) 

Here, the numerator is the number of ways to draw g alleles from 
among the alleles that do not have allelic type i. The denominator 
is the total number of ways to draw g alleles from among the Nj 

alleles in population j.
The probability Rijg that allelic type i is rare in a subsample of size 

g is the probability of observing at least 1 and at most ⌊zNj⌋ copies of 
allelic type i in a subsample of size g. The floor function accounts 
for the classification of an allelic type with frequency exactly 
100z% as rare rather than common. The probability Rijg satisfies

Rijg =

􏽐⌊zNj⌋

k=1
Nij

k

􏼐 􏼑
Nj−Nij

g−k

􏼐 􏼑􏽨 􏽩

Nj
g

􏼐 􏼑 . (2) 

The numerator in equation 2 sums over all possible ways to choose 
at least 1 and at most ⌊zNj⌋ copies of allelic type i. The denominator 

again gives the total number of ways to draw g alleles from the 
population sample size Nj.

Finally, the probability that allelic type i is common in a sample 
of size g taken from population j is simply

Cijg = 1 − Uijg − Rijg. (3) 

Now that we have probabilities for an allelic type in a single 
population, we consider all J populations to determine the prob
ability of a particular pattern x. The probability that allelic type 
i has pattern x = (x1, x2, . . . , xJ) in a sample containing g alleles 
each from the J populations is

􏽙J

j=1

fijg(xj), where fijg(xj) =
Uijg, xj = U,
Rijg, xj = R,
Cijg, xj = C.

⎧
⎨

⎩
(4) 

At a locus, we sum across all I allelic types to give the expected 
fraction of allelic types that have pattern x:

1
I

􏽘I

i=1

􏽙J

j=1

fijg(xj). (5) 

Extension to more than three classes
We can generalize the results describing unobserved, rare, and com
mon allelic types to compute the probability Pijg of finding an allelic 
type i in population j in a specified frequency window, where arbitrar
ily many windows are permitted. Define a window (z1, z2], describing 
allelic types with a frequency greater than z1 and less than or equal to 
z2. Equation 2 for the probability that a sample of size g has its fre
quency for allelic type i in the window (0, z] generalizes, and the prob
ability that allelic type i has its frequency in (z1, z2] is

Pijg =

􏽐⌊z2Nj⌋

k=⌊z1Nj⌋+1
Nij

k

􏼐 􏼑
Nj−Nij

g−k

􏼐 􏼑􏽨 􏽩

Nj
g

􏼐 􏼑 . (6) 
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Equation 6 can consider arbitrary divisions of the unit interval for 
frequencies into disjoint intervals. Note that if we instead regard in
tervals as having a closed lower bound and an open upper bound, so 
that we consider the probability that an allelic type has frequency in 
[z1, z2), then we simply change the limits of the sum to ⌈z1Nj⌉ and 

⌈z2Nj⌉ − 1.

Biallelic loci
For biallelic loci, I = 2, suppose we are interested in only one spe
cific allelic type. We label this allelic type by 1 and the other allelic 
type by 2 and write simplified formulas for Uijg and Rijg. N1j is the 
count of allelic type 1 in population j and N2j is the count of allelic 
type 2. Then

Uijg =
N2j
g

􏼐 􏼑

Nj
g

􏼐 􏼑 , (7) 

Rijg =

􏽐⌊zNj⌋

k=1
N1j

k

􏼐 􏼑
N2j

g−k

􏼐 􏼑􏽨 􏽩

Nj
g

􏼐 􏼑 . (8) 

Equation 4 can then be used to calculate the probability that al
lelic type 1 has pattern x = (x1, x2, . . . , xJ). With three frequency 

classes in each of J populations, allelic type 1 has 3J possible 
patterns.

Data analysis
Biddanda et al. (2020) dataset
Biddanda et al. (2020) used data from the 2,504 individuals in the 
26 populations of the 1000 Genomes Project (The 1000 Genomes 
Project Consortium 2015; Byrska-Bishop et al. 2022) to explore 
the relative abundances of different patterns x, considering five 
“super-populations.” They used the globally minor allele at each 
locus—the allelic type at global frequency less than 50%—to clas
sify each locus as a pattern x = (x1, x2, . . . , xJ), where J = 5.

They placed the 1000 Genomes populations, annotated here by 
three-letter abbreviations, into the five super-populations. From 1 
to 5, vector entries correspond to African (ESN, GWD, LWK, MSL, 
YRI), European (FIN, GBR, IBS, TSI), South Asian (BEB, GIH, ITU, PJL, 
STU), East Asian (CDX, CHB, CHS, JPT, KHV), and American super- 
populations (ACB, ASW, CEU, CLM, MXL, PEL, PUR). Thus, for ex
ample, a locus rare in Africa, common in East Asia, and unobserved 
elsewhere has pattern x = {R, U, U, C, U} or RUUCU for short.

Biddanda et al. (2020) considered genome-wide biallelic SNPs, 
classifying each SNP into one of 35 − 1 patterns based on the glo
bally minor allele; because each locus is polymorphic by defin
ition, the pattern UUUUU is omitted in their analysis.

We downloaded the dataset used by Biddanda et al. (2020) from 
the 1000 Genomes FTP server (see “Data availability”). We retained 
the same super-population categories used by Biddanda et al. 
(2020). After filtering to consider only biallelic SNPs, we deter
mined the globally minor allele for each SNP. Our definition of 
the minor allele is the allelic type that, when averaging relative 
frequencies across the five super-populations, has frequency be
low 1

2; for 240 sites genome-wide with exactly 50% global fre
quency for each of the two allelic types, we chose one allelic 
type at random to be the “minor” allele. We then tabulated counts 
of the minor allele for the five super-populations, disregarding 
sites for which data were entirely missing in at least one of the 
five. This process left us with 95,563,258 SNPs in the 2,504 
individuals.

Pointwise rarefaction analysis
To evaluate the effect of sample-size correction on the geographic 
distribution of allelic types, we applied the rarefaction calculation 
(equation 4) to the 1000 Genomes SNPs in the five super- 
populations. This calculation relies on the biallelic equations 7
and 8, along with equation 3. For an illustrative analysis, we con
sidered 1,226,225 SNPs on chromosome 22, ensuring that each 
SNP possessed a sample of size 500 or greater in each of the five 
super-populations (the equivalent of 250 diploid individuals).

Thus, for each of a series of values of g, for each SNP, focusing 
on the minor allele, we obtained probabilities for each of the 35 = 
243 patterns, treating 5% as the maximal frequency for allelic 
types treated as rare. For fixed g, for each of the 243 patterns, 
we averaged the SNP-specific probabilities across all SNPs to de
termine the mean probability that a randomly chosen locus in 
the SNP set has a specific pattern. To understand the effect of 
the subsample size on pattern probabilities, we modulated the 
sample size g in increments of 10, considering all multiples of 10 
in [10, 500].

Next, to study the numbers of super-populations in which var
iants are common and rare, we collapsed the 243 patterns into 
summaries that disregard the identities of the super-populations 
in which allelic types are unobserved, rare, and common. For 
these summaries, we track only the numbers of U’s, R’s, and C’s 
for a given allelic type as an ordered triple (|U|, |R|, |C|). For ex
ample, if an allelic type has the pattern RUUUU, URUUU, 
UURUU, UUURU, or UUUUR, then it is summarized as (4, 1, 0). 
The number of possible summaries is 21.

Sliding-window analysis
To examine the change in pattern probabilities along the genome, 
we calculated the probability distribution of patterns in sliding 
windows. We tiled the genome with nonoverlapping 100-kb win
dows. Within each window, we averaged the 21 summaries across 
SNPs within the window, still focusing on the globally minor allele 
at each SNP. For this analysis, we focused on a single value of g, 
choosing g = 500, summarizing the patterns using the 21 ordered 
triples (|U|, |R|, |C|).

Results
Pointwise rarefaction analysis
Figure 1a shows the pointwise probabilities of the various patterns 
for 1,226,225 SNPs on chromosome 22. The figure visualizes the 11 
patterns that have probability 1% or greater at g = 250, grouping 
the other 232 patterns into a single “other” category; this choice 
of the intermediate value of g = 250 facilitates visualization of pat
terns that are probable at high g or low g but not both.

The highest-frequency pattern for all sample sizes is UUUUU, 
the probability of observing no variation across the five super- 
populations; this pattern is the one most likely to be observed if 
an allelic type is present in the full data but extremely rare. 
Among the other high-frequency patterns, five of the next six re
present allelic types that are rare in one super-population and ab
sent in the other four; the sixth, RUUUR, is allelic types rare in 
both the African and American super-populations, likely a result 
of admixed African-descended populations in the American 
super-population. CCCCC is included; it is the only high- 
frequency pattern that includes any common variation.

Increases in the sample size decrease the frequency of UUUUU 
and increase the frequencies of patterns containing rare allelic 
types. As the sample size increases, the probability increases that 
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a rare variant is detected in a sample, so that previously unobserved 
allelic types are increasingly likely to be observed as rare.

In Fig. 1b, we analyze the effect of extremely rare allelic types 
on the patterns by discarding all 614,354 SNPs whose minor allele 
appears only once among the 2,504 individuals, leaving 611,871 
nonsingleton SNPs on chromosome 22. By removing singletons, 
we deflate the UUUUU proportion, revealing patterns that previ
ously grouped into the “other” category; the number of patterns 
with frequency at least 1% at g = 250 increases from 11 to 14. All 
11 previous high-frequency patterns are observed, in addition to 
two in which allelic types are rare in multiple super-populations 
and unobserved in others (RRRUR, RRUUR) and one in which alle
lic types are common in some super-populations and rare in 
others (RCCCC). Patterns containing one R and four U’s continue 
to be among the higher-frequency patterns, indicating that these 
patterns result from rare variation that is not limited to allelic 
types present in only a single copy. Similar observations hold 
genome-wide (Supplementary Fig. S1).

In Biddanda et al. (2020), without a sample-size correction, all 
loci are biallelic. Hence, no variant can be entirely unobserved, 
and Biddanda et al. (2020) did not consider the UUUUU pattern. 
To facilitate a comparison of the relative probabilities of the re
maining 242 patterns between our analysis and that of Biddanda 
et al. (2020), we remove the UUUUU pattern at each g and divide 
the remaining pattern frequencies by 1 − P[UUUUU] (Fig. 1c). 
With this normalization, three patterns with frequencies below 

1% at g = 250 in Fig. 1a now have frequencies greater than or equal 
to 1%: RRUUR, RCCCC, and RRRUR. For most patterns, the fre
quency is largely unaffected by changes in the sample size g. An 
interesting exception is RRRRR, for which a particularly strong ef
fect of the discrete sample size is evident. At small g, this pattern is 
observed when exactly one copy of an allelic type is seen in each of 
the five super-populations; as described in the example in the 
Introduction, common allelic types with frequencies near the fre
quency cutoff between rare and common are mistakenly categor
ized as rare, and as the sample size g increases, it is possible to 
correctly determine that those allelic types are, in fact, common.

Figure 1c provides a comparison of the sample-size-corrected 
probabilities with the empirical pattern frequencies observed in 
the sample, the frequencies that correspond to the non-sample- 
size-corrected calculation of Biddanda et al. (2020) (rightmost col
umn of Fig. 1c). Although many of the corrected pattern frequen
cies differ from the uncorrected frequencies at small g, at g = 500, 
the sample-size-corrected probability of observing a given pattern 
is comparable to the empirical frequency of that pattern in the full 
set of loci. A similar general agreement of the empirical frequency 
to sample-size-corrected probabilities at high g is observed in 
Fig. 1d, with singletons excluded. As in the comparison of Fig. 1b 
and a, exclusion of singletons increases the number of patterns 
occurring at frequency ≥0.01 when g = 250, from 13 to 18. The ex
clusion of singletons reduces frequencies for patterns with one R 
and four U’s, so that additional patterns cross the 1% threshold.

(a) (b)

(c) (d)

Fig. 1. Probability that the globally minor allele at a locus has a given geographic distribution pattern as a function of g, the number of alleles sampled in 
each super-population (equation 4). a) All SNPs on chromosome 22. b) All nonsingleton SNPs on chromosome 22. c) All SNPs on chromosome 22, 
normalizing by 1 − P[UUUUU]. d) All nonsingleton SNPs on chromosome 22, normalizing by 1 − P[UUUUU]. In a five-letter pattern, U is unobserved, R is 
rare (>0% and ≤5% population frequency), and C is common (>5%). The order in which super-populations are listed is Africa, Europe, South Asia, East 
Asia, and the Americas. For example, RUUUU refers to a minor allele that is rare in Africa and unobserved in each of the other four super-populations.

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/article/224/2/iyad070/7131138 by Pennsylvania State U

niversity user on 30 M
ay 2023

http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad070#supplementary-data


D. J. Cotter et al. | 5

A further comparison of sample-size-corrected pattern fre
quencies with uncorrected frequencies appears in Fig. 2. In this 
figure, we evaluate the fraction of loci for which the empirical pat
tern at a locus matches the (non-UUUUU) pattern with greatest 
sample-size-corrected probability. Performing this computation 
at each value of the sample size g, we observe that the probability 
that the empirical pattern is a match to the highest-probability 
pattern with sample-size correction increases with g (Fig. 2). 
With singletons included, at g = 10, the probability of agreement 
is 66.6%, and at g = 500, it is 85.1%. The probabilities are somewhat 
lower with singletons excluded; at g = 10, the agreement probabil
ity is 33.0%, and at g = 500, it is 70.1%. Because singleton loci can 
only take on one non-UUUUU pattern in the rarefaction calcula
tion (rare in the one super-population where the allelic type is 
seen), given that they must be polymorphic in the empirical 
data, the empirical pattern necessarily agrees with the highest- 
probability sample-size-corrected non-UUUUU pattern.

We accentuate the comparison between sample-size-corrected 
and uncorrected pattern frequencies by depicting the 
non-UUUUU pattern frequencies at g = 10 and g = 500, alongside 
depictions of corresponding empirical pattern frequencies in the 
style of Biddanda et al. (2020) (Fig. 3). At the smaller g = 10, com
mon variation is unlikely: allelic types at the low end of the fre
quency interval for common variation are relatively unlikely to 
be sampled in such a small sample size, so that pattern CCCCC 
has a low probability. However, at g = 500, allelic types that are 
truly common are more likely to be detected as common. The pat
tern frequencies for large g generally agree with the empirical pat
tern frequencies without sample-size correction.

Figure 4 provides a summary of pattern frequencies at g = 500, 
collapsing the 243 patterns into 21 groups tabulating the numbers 
of super-populations in which allelic types are unobserved, rare, 
and common. Considering all 243 patterns and excluding single
tons as in Fig. 1b, we observe, as can be seen in Fig. 1b, that the 
highest probabilities occur for groups (4, 1, 0), (3, 2, 0), (5, 0, 0), 
and (2, 3, 0), representing allelic types that are rare or unobserved 

in all super-populations. Next in probability is (0, 0, 5), represent
ing allelic types that are common in all super-populations. 
Probabilities are particularly small for scenarios (4, 0, 1), (3, 0, 2), 
(2, 0, 3), and (1, 0, 4), representing variation that is common in 
some super-populations and unobserved in others.

Sliding-window analysis
Figure 5a shows the 21 groups of patterns as a function of genomic 
position in 100-kb, nonoverlapping windows on chromosome 22, 
considering nonsingleton loci and samples of size g = 500. In gen
eral, the probability distribution of the 21 groups shows little 
variation across the chromosome, mimicking the pointwise obser
vations in Fig. 4. The highest-probability pattern groups are gener
ally those that represent allelic types that are rare in one or more 
super-populations and unobserved in the others. A relatively high 
probability also occurs for allelic types that are common in all five 
super-populations.

Figure 5b visualizes changes in rank for the groups of patterns 
as a function of position along the chromosome, highlighting the 
pattern groups that enter the top two ranks in at least one win
dow. This visualization emphasizes that patterns in which allelic 
types are rare in one or two super-populations have the highest 
frequency in most windows. It also uncovers windows that show 
a difference from the chromosome-wide average. For example, 
between 18 and 19 Mb, a spike occurs in the probability that a min
or allele is common in all five super-populations, and the group 
(0, 0, 5), which often lies at rank 3, instead jumps to rank 1.

To illustrate one of many deviations from typical pattern prob
abilities that occur periodically across the genome 
(Supplementary Fig. S2), we consider an example. In particular, 
as local changes in the extent to which allelic types are globally 
common can reflect evolutionary processes such as balancing se
lection, we examine the local change in probabilities in the highly 
variable HLA region on chromosome 6 (Fig. 6), where balancing se
lection is an important phenomenon (Meyer et al. 2018). 
Interestingly, in the HLA region (28.5–33.5 Mb), the group (0, 0, 5) 
has rank 1 in many windows, as might be expected for a region 
in which a balancing selection process maintains nontrivial fre
quencies for allelic types across many populations.

Discussion
We have introduced a method for obtaining sample-size- 
corrected pattern probabilities describing the geographic distribu
tion of allelic types. The method combines the “Geovar” plots of 
Biddanda et al. (2020)—which describe the probabilities with 
which allelic types are unobserved, rare, or common in different 
population groups—with the rarefaction approach of Szpiech 
et al. (2008), which mathematically studies geographic distribu
tions of allelic types in subsamples that have an equal size in dif
ferent groups.

Our analysis finds that with the use of a parameter g for the 
fixed sample size examined in each of the various groups, prob
abilities of allelic patterns do change somewhat (Fig. 1). Most not
ably, as g increases, the probability of classifying an allelic type as 
entirely unobserved declines (Fig. 1a and b). With this pattern 
omitted, pattern probabilities are relatively stable with g (Fig. 1c 
and d). However, g must be sufficiently large before the stability 
emerges. In small samples, discreteness effects influence the 
probability that an allelic type is rare in all groups; in using the rar
efaction approach to examine pattern probabilities, such effects 
can potentially be mitigated by increasing the maximal frequency 
regarded as rare in small samples. Such an approach might be 

Fig. 2. Probability as a function of the sample size g that across SNPs on 
chromosome 22, the highest-probability non-UUUUU pattern calculated 
using a sample-size correction (equation 4) matches the empirically 
observed pattern without sample-size correction.
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warranted in cases in which some of the groups of interest have 
samples that are much smaller than those of other groups, such 
as in comparisons involving ancient and modern data; suitable 
choices of frequency thresholds will depend on the specific sam
ple sizes in data sets and on the underlying distribution of true al
lele frequencies. Conversely, if all sample sizes are extremely 
large, it may be convenient to use equation 6 to distinguish mul
tiple tiers of rare allelic types, for example, for separating fre
quency classes rare enough to be restricted to one group from 
higher-frequency classes whose allelic types are still rare but like
ly to be found in multiple populations.

With a large sample size, g = 500, our pattern probabilities with 
a sample-size correction closely match those observed without a 
sample-size correction in the manner of Biddanda et al. (2020)
(Fig. 3). This general agreement suggests that the sample sizes in 
the Biddanda et al. (2020) super-population assignment—504, 
404, 489, 504, and 603 individuals for AFR, EUR, SAS, EAS, and 
AMR, respectively—are sufficiently large that differences among 
them likely had little effect on the non-sample-size-corrected pat
tern probabilities of Biddanda et al. (2020) when using 5% as the 
demarcation between rare and common allelic types. In particu
lar, our pattern probability calculations with sample-size correc
tions recapitulate the finding that most allelic types are rare in 
one or a few super-populations and unobserved in the others, or 
common in all super-populations (Fig. 4).

The work of Biddanda et al. (2020) is motivated by a goal not 
only of describing features of human genetic similarity and differ
ence, it is also one of many examples of studies that place particu
lar emphasis on new visualizations to capture those features (e.g. 
Mountain and Ramakrishnan 2005; Conrad et al. 2006; Pickrell 
et al. 2009; Teo and Small 2010; Rosenberg 2011; San Lucas et al. 
2012; Petkova et al. 2016; Marcus and Novembre 2017; 
Diaz-Papkovich et al. 2019; Greenbaum et al. 2019; Peter et al. 
2020; Battey et al. 2021). Such visualizations provide new 

representations of population-genetic statistics for use in under
standing processes that affect genetic variation across popula
tions. Emphases on visualization have been of increasing 
interest in light of ongoing misrepresentations of human 
population-genetic findings—particularly the misuse of graphical 
visualizations as apparent evidence of unsupportable views of hu
man difference belied by the analyses that underlie the graphics 
(Carlson et al. 2022). Pattern probabilities, such as those we have 
considered here and those of Biddanda et al. (2020), enable a 

(a) (b)

Fig. 3. Pattern probabilities at g = 10 and g = 500 compared to non-sample-size-corrected pattern probabilities. The sample-size-corrected and non- 
sample-size-corrected probabilities are calculated on chromosome 22. a) All SNPs on chromosome 22, as in Fig. 1c, with non-sample-size-corrected 
pattern probabilities depicted analogously to Fig. 3b of Biddanda et al. (2020). b) Nonsingleton SNPs on chromosome 22, as in Fig. 1d, with non- 
sample-size-corrected pattern probabilities depicted analogously to Fig. 3c of Biddanda et al. (2020). The colors used to depict pattern probabilities for 
g = 10 and g = 500 are the same as those used in Fig. 1.

Fig. 4. Probabilities for groups of patterns for a nonsingleton minor allele 
on chromosome 22, in samples containing g = 500 alleles from each 
super-population. The figure summarizes the g = 500 column of Fig. 1b, 
tabulating the numbers of super-populations in which allelic types are 
unobserved, rare, and common. An ordered triple is written (|U|, |R|, |C|), 
so that, for example, 2.84% for the entry (0, 1, 4) indicates that 2.84% of 
allelic types are unobserved in 0 super-populations, rare in 1 
super-population, and common in 4 super-populations.
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variety of visualizations of human variation beyond the “Geovar” 
style. Our Fig. 1, describing pattern probabilities in the categories 
“unobserved,” “rare,” and “common,” updates visualizations of the 
sample-size-corrected pattern probabilities of Szpiech et al. (2008), 
which grouped rare and common allelic types in a single category 
of “observed” allelic types. Figure 4, summarizing pattern prob
abilities by the number of super-populations in which allelic types 
are unobserved, rare, and common, updates similar summaries 
that also did not distinguish between rare and common allelic 
types (Rosenberg et al. 2002, Fig. S1a; Jakobsson et al. 2008, 
Fig. 1a; Rosenberg 2011, Fig. 4a and Table 2; The 1000 Genomes 
Project Consortium 2015, Fig. 1a). Finally, Fig. 5 illustrates that 
pattern probabilities can be considered locally as a function of 
genomic position; this form of analysis can also suggest signa
tures of population-genetic processes such as balancing selection 
in the HLA region (Fig. 6).

Our analysis has made use of dense human genomic data. For 
genomes with a higher density of variants than the human gen
ome, shorter window sizes may be convenient for measurement 
of pattern probabilities. For lower-density data, longer window 
sizes might be required for accumulating enough variable sites 
to accurately measure pattern probabilities. Even in the data we 
have examined, data quality might vary across windows; this 
problem might affect the HLA region, in which high variation le
vels can lead through technical artifacts to biased estimation of 

allele frequencies (Brandt et al. 2015). The window size can be 
tuned appropriately to the analysis of interest.

Our observation that allelic types are generally rare in some hu
man groups and unobserved in others, or common in most or all 
groups—here seen with a rarefaction method—has been consist
ently observed across datasets and choices of population groups 
(Cavalli-Sforza et al. 1994; The International HapMap 3 
Consortium 2010; Rosenberg 2011; The 1000 Genomes Project 
Consortium 2015; Biddanda et al. 2020). Analyses enabled by a focus 
on pattern probabilities, with the improvements from the sample- 
size correction introduced here, provide new approaches to empha
sizing and visualizing this fundamental result in human evolution
ary genetics.

Data availability
We downloaded publicly available data from the 1000 Genomes FTP 
site: http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/ 
1000G_2504_high_coverage/working/20190425_NYGC_GATK/. All 
code used for the analyses is available on GitHub: github.com/ 
djcotter/rarefaction-rare-vs-common. Supplemental material is 
available at GENETICS online.
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(a)

(b)

Fig. 5. Probabilities for groups of patterns for minor alleles on 
chromosome 22, in samples containing g = 500 alleles from each 
super-population, averaged across all nonsingleton loci in 
nonoverlapping 100-kb sliding windows. Ordered triples are written 
(|U|, |R|, |C|), with the entries representing the numbers of 
super-populations in which allelic types are unobserved, rare, and 
common, respectively. Triples are grouped by color, varying within 
classes with a given number of super-populations in which allelic types 
are common. a) Probabilities for pattern groups. b) Local frequency ranks 
of pattern groups, from 1 to 20 (the pattern in which allelic types are 
unobserved in all super-populations, (5, 0, 0), is excluded). For simplicity, 
only those pattern groups that achieve frequency rank 1 or 2 in at least 
one window on the chromosome receive a color. The remaining pattern 
groups are shaded gray. Note that the first 10 Mb of chromosome 22 are 
excluded, as they do not appear in the 1000 Genomes dataset; the 
centromere is also excluded.

(a)

(b)

Fig. 6. Probabilities for pattern groups for minor alleles of nonsingleton 
loci appearing between 20 and 40 Mb on chromosome 6, covering the HLA 
region (approximately 28.5–33.5 Mb on reference build hg38). The data 
analysis and figure design follow Fig. 5. a) Probabilities for pattern groups. 
b) Local frequency ranks of pattern groups.
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